Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine how many minutes Amy should leave the bottle of water in the cooler until it reaches a temperature of 21 degrees Celsius, we need to solve the given temperature function for [tex]\( t \)[/tex]. The temperature function is given by:
[tex]\[ C(t) = 4 + 20 e^{-0.05t} \][/tex]
We want to find [tex]\( t \)[/tex] when [tex]\( C(t) = 21 \)[/tex]. So, we set up the equation:
[tex]\[ 21 = 4 + 20 e^{-0.05t} \][/tex]
Next, we solve for [tex]\( t \)[/tex]:
1. Subtract 4 from both sides to isolate the exponential term:
[tex]\[ 21 - 4 = 20 e^{-0.05t} \][/tex]
[tex]\[ 17 = 20 e^{-0.05t} \][/tex]
2. Divide both sides by 20 to further isolate the exponential term:
[tex]\[ \frac{17}{20} = e^{-0.05t} \][/tex]
3. Take the natural logarithm of both sides to solve for the exponent:
[tex]\[ \ln\left(\frac{17}{20}\right) = \ln\left(e^{-0.05t}\right) \][/tex]
[tex]\[ \ln\left(\frac{17}{20}\right) = -0.05t \][/tex]
4. Rearrange to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln\left(\frac{17}{20}\right)}{-0.05} \][/tex]
Using the calculated natural logarithm and performing the division, we find:
[tex]\[ t \approx 3.250378589955499 \][/tex]
Therefore, Amy should leave the bottle in the cooler for approximately [tex]\( 3.25 \)[/tex] minutes until it reaches a temperature of 21 degrees Celsius.
[tex]\[ C(t) = 4 + 20 e^{-0.05t} \][/tex]
We want to find [tex]\( t \)[/tex] when [tex]\( C(t) = 21 \)[/tex]. So, we set up the equation:
[tex]\[ 21 = 4 + 20 e^{-0.05t} \][/tex]
Next, we solve for [tex]\( t \)[/tex]:
1. Subtract 4 from both sides to isolate the exponential term:
[tex]\[ 21 - 4 = 20 e^{-0.05t} \][/tex]
[tex]\[ 17 = 20 e^{-0.05t} \][/tex]
2. Divide both sides by 20 to further isolate the exponential term:
[tex]\[ \frac{17}{20} = e^{-0.05t} \][/tex]
3. Take the natural logarithm of both sides to solve for the exponent:
[tex]\[ \ln\left(\frac{17}{20}\right) = \ln\left(e^{-0.05t}\right) \][/tex]
[tex]\[ \ln\left(\frac{17}{20}\right) = -0.05t \][/tex]
4. Rearrange to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln\left(\frac{17}{20}\right)}{-0.05} \][/tex]
Using the calculated natural logarithm and performing the division, we find:
[tex]\[ t \approx 3.250378589955499 \][/tex]
Therefore, Amy should leave the bottle in the cooler for approximately [tex]\( 3.25 \)[/tex] minutes until it reaches a temperature of 21 degrees Celsius.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.