Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the horizontal translation from the parent function [tex]\( f(x) = x^2 \)[/tex] to the function [tex]\( g(x) = (x-4)^2 + 2 \)[/tex], we need to focus on the expression inside the parentheses.
1. The given function is [tex]\( g(x) = (x-4)^2 + 2 \)[/tex].
2. For horizontal translation, we examine the term involving [tex]\( x \)[/tex] inside the squared term, which is [tex]\( (x-4) \)[/tex].
The general form for a horizontally translated function is [tex]\( f(x-h) \)[/tex], which represents a shift of the graph of [tex]\( f(x) \)[/tex] horizontally by [tex]\( h \)[/tex] units.
3. In this case, the parent function [tex]\( f(x) = x^2 \)[/tex] is modified to [tex]\( f(x-4) = (x-4)^2 \)[/tex].
4. The term [tex]\( (x-4) \)[/tex] indicates a horizontal shift to the right by 4 units because [tex]\( h = 4 \)[/tex].
Therefore, the value representing the horizontal translation from the graph of the parent function [tex]\( f(x) = x^2 \)[/tex] to [tex]\( g(x) = (x-4)^2 + 2 \)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
1. The given function is [tex]\( g(x) = (x-4)^2 + 2 \)[/tex].
2. For horizontal translation, we examine the term involving [tex]\( x \)[/tex] inside the squared term, which is [tex]\( (x-4) \)[/tex].
The general form for a horizontally translated function is [tex]\( f(x-h) \)[/tex], which represents a shift of the graph of [tex]\( f(x) \)[/tex] horizontally by [tex]\( h \)[/tex] units.
3. In this case, the parent function [tex]\( f(x) = x^2 \)[/tex] is modified to [tex]\( f(x-4) = (x-4)^2 \)[/tex].
4. The term [tex]\( (x-4) \)[/tex] indicates a horizontal shift to the right by 4 units because [tex]\( h = 4 \)[/tex].
Therefore, the value representing the horizontal translation from the graph of the parent function [tex]\( f(x) = x^2 \)[/tex] to [tex]\( g(x) = (x-4)^2 + 2 \)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.