Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the volume of an oblique pyramid with a square base, we need to follow a series of steps. Let's go through them one by one.
1. Identify the given dimensions:
- Edge length of the square base ([tex]\( a \)[/tex]): 5 cm
- Height of the pyramid ([tex]\( h \)[/tex]): 7 cm
2. Calculate the area of the square base:
- The area ([tex]\( A \)[/tex]) of a square is given by the formula [tex]\( A = \text{edge length}^2 \)[/tex].
- Plugging in the edge length:
[tex]\[ A = 5^2 = 25 \text{ cm}^2 \][/tex]
3. Calculate the volume of the pyramid:
- The volume ([tex]\( V \)[/tex]) of a pyramid is given by the formula [tex]\( V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \)[/tex].
- Using the base area calculated and the given height:
[tex]\[ V = \frac{1}{3} \times 25 \times 7 \][/tex]
- Perform the multiplication:
[tex]\[ \frac{1}{3} \times 25 \times 7 = \frac{175}{3} \approx 58.333 \text{ cm}^3 \][/tex]
4. Convert the decimal result to a mixed number for the given choices:
- The value [tex]\( 58.333 \)[/tex] in mixed number form is [tex]\( 58 \frac{1}{3} \)[/tex].
Finally, the volume of the pyramid is [tex]\( 58 \frac{1}{3} \text{ cm}^3 \)[/tex].
So, the correct choice is:
[tex]\[ \boxed{58 \frac{1}{3} \text{ cm}^3} \][/tex]
1. Identify the given dimensions:
- Edge length of the square base ([tex]\( a \)[/tex]): 5 cm
- Height of the pyramid ([tex]\( h \)[/tex]): 7 cm
2. Calculate the area of the square base:
- The area ([tex]\( A \)[/tex]) of a square is given by the formula [tex]\( A = \text{edge length}^2 \)[/tex].
- Plugging in the edge length:
[tex]\[ A = 5^2 = 25 \text{ cm}^2 \][/tex]
3. Calculate the volume of the pyramid:
- The volume ([tex]\( V \)[/tex]) of a pyramid is given by the formula [tex]\( V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \)[/tex].
- Using the base area calculated and the given height:
[tex]\[ V = \frac{1}{3} \times 25 \times 7 \][/tex]
- Perform the multiplication:
[tex]\[ \frac{1}{3} \times 25 \times 7 = \frac{175}{3} \approx 58.333 \text{ cm}^3 \][/tex]
4. Convert the decimal result to a mixed number for the given choices:
- The value [tex]\( 58.333 \)[/tex] in mixed number form is [tex]\( 58 \frac{1}{3} \)[/tex].
Finally, the volume of the pyramid is [tex]\( 58 \frac{1}{3} \text{ cm}^3 \)[/tex].
So, the correct choice is:
[tex]\[ \boxed{58 \frac{1}{3} \text{ cm}^3} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.