Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the volume of an oblique pyramid with a square base, we need to follow a series of steps. Let's go through them one by one.
1. Identify the given dimensions:
- Edge length of the square base ([tex]\( a \)[/tex]): 5 cm
- Height of the pyramid ([tex]\( h \)[/tex]): 7 cm
2. Calculate the area of the square base:
- The area ([tex]\( A \)[/tex]) of a square is given by the formula [tex]\( A = \text{edge length}^2 \)[/tex].
- Plugging in the edge length:
[tex]\[ A = 5^2 = 25 \text{ cm}^2 \][/tex]
3. Calculate the volume of the pyramid:
- The volume ([tex]\( V \)[/tex]) of a pyramid is given by the formula [tex]\( V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \)[/tex].
- Using the base area calculated and the given height:
[tex]\[ V = \frac{1}{3} \times 25 \times 7 \][/tex]
- Perform the multiplication:
[tex]\[ \frac{1}{3} \times 25 \times 7 = \frac{175}{3} \approx 58.333 \text{ cm}^3 \][/tex]
4. Convert the decimal result to a mixed number for the given choices:
- The value [tex]\( 58.333 \)[/tex] in mixed number form is [tex]\( 58 \frac{1}{3} \)[/tex].
Finally, the volume of the pyramid is [tex]\( 58 \frac{1}{3} \text{ cm}^3 \)[/tex].
So, the correct choice is:
[tex]\[ \boxed{58 \frac{1}{3} \text{ cm}^3} \][/tex]
1. Identify the given dimensions:
- Edge length of the square base ([tex]\( a \)[/tex]): 5 cm
- Height of the pyramid ([tex]\( h \)[/tex]): 7 cm
2. Calculate the area of the square base:
- The area ([tex]\( A \)[/tex]) of a square is given by the formula [tex]\( A = \text{edge length}^2 \)[/tex].
- Plugging in the edge length:
[tex]\[ A = 5^2 = 25 \text{ cm}^2 \][/tex]
3. Calculate the volume of the pyramid:
- The volume ([tex]\( V \)[/tex]) of a pyramid is given by the formula [tex]\( V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \)[/tex].
- Using the base area calculated and the given height:
[tex]\[ V = \frac{1}{3} \times 25 \times 7 \][/tex]
- Perform the multiplication:
[tex]\[ \frac{1}{3} \times 25 \times 7 = \frac{175}{3} \approx 58.333 \text{ cm}^3 \][/tex]
4. Convert the decimal result to a mixed number for the given choices:
- The value [tex]\( 58.333 \)[/tex] in mixed number form is [tex]\( 58 \frac{1}{3} \)[/tex].
Finally, the volume of the pyramid is [tex]\( 58 \frac{1}{3} \text{ cm}^3 \)[/tex].
So, the correct choice is:
[tex]\[ \boxed{58 \frac{1}{3} \text{ cm}^3} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.