Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, I'll walk you through the step-by-step solution for calculating the reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction involving [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] and [tex]\( \text{Cr}^{3+} \)[/tex].
### Step-by-Step Solution:
1. Identify Given Data:
- Standard electrode potential, [tex]\( E^\circ = 1.5 \)[/tex] V
- Concentration of [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] is [tex]\( 4 \times 10^{-4} \)[/tex] M
- Concentration of [tex]\( \text{Cr}^{3+} \)[/tex] is [tex]\( 2 \times 10^{-2} \)[/tex] M
- pH of the solution is 1
2. Determine the number of electrons transferred ([tex]\( n \)[/tex]):
The balanced reaction is:
[tex]\[ \text{Cr}_2\text{O}_7^{2-} + 14 \text{H}^+ + 6 \text{e}^- \rightarrow 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O} \][/tex]
From this equation, we see that 6 electrons ([tex]\( n = 6 \)[/tex]) are transferred in the reaction.
3. Calculate the concentration of [tex]\(\text{H}^+\)[/tex] from pH:
The pH is given as 1. Using the definition of pH:
[tex]\[ \text{pH} = -\log[\text{H}^+] \][/tex]
Thus,
[tex]\[ [\text{H}^+] = 10^{-1} = 0.1 \text{ M} \][/tex]
4. Calculate the reaction quotient ([tex]\( Q \)[/tex]):
The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q = \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}] \cdot [\text{H}^+]^{14}} \][/tex]
Plugging in the given concentrations:
[tex]\[ [\text{Cr}_2\text{O}_7^{2-}] = 4 \times 10^{-4} \text{ M} \][/tex]
[tex]\[ [\text{Cr}^{3+}] = 2 \times 10^{-2} \text{ M} \][/tex]
[tex]\[ [\text{H}^+] = 0.1 \text{ M} \][/tex]
Thus,
[tex]\[ Q = \frac{(2 \times 10^{-2})^2}{(4 \times 10^{-4}) \cdot (0.1)^{14}} \][/tex]
Simplifying:
[tex]\[ Q = \frac{4 \times 10^{-4}}{4 \times 10^{-4} \cdot 10^{-14}} = \frac{4 \times 10^{-4}}{4 \times 10^{-18}} = 10^{14} = 99999999999999.92 \][/tex]
5. Use the Nernst Equation to find [tex]\( E_{\text{red}} \)[/tex]:
The Nernst equation is:
[tex]\[ E = E^\circ - \frac{0.0591}{n} \log_{10}(Q) \][/tex]
Substituting the known values:
[tex]\[ E = 1.5 - \frac{0.0591}{6} \log_{10}(99999999999999.92) \][/tex]
Evaluate the term:
[tex]\[ \log_{10}(99999999999999.92) \approx 14 \][/tex]
So,
[tex]\[ E = 1.5 - \frac{0.0591}{6} \times 14 = 1.5 - 0.1379 = 1.3621 \text{ V} \][/tex]
### Final Answer:
The reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction is [tex]\( 1.3621 \text{ V} \)[/tex].
### Step-by-Step Solution:
1. Identify Given Data:
- Standard electrode potential, [tex]\( E^\circ = 1.5 \)[/tex] V
- Concentration of [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] is [tex]\( 4 \times 10^{-4} \)[/tex] M
- Concentration of [tex]\( \text{Cr}^{3+} \)[/tex] is [tex]\( 2 \times 10^{-2} \)[/tex] M
- pH of the solution is 1
2. Determine the number of electrons transferred ([tex]\( n \)[/tex]):
The balanced reaction is:
[tex]\[ \text{Cr}_2\text{O}_7^{2-} + 14 \text{H}^+ + 6 \text{e}^- \rightarrow 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O} \][/tex]
From this equation, we see that 6 electrons ([tex]\( n = 6 \)[/tex]) are transferred in the reaction.
3. Calculate the concentration of [tex]\(\text{H}^+\)[/tex] from pH:
The pH is given as 1. Using the definition of pH:
[tex]\[ \text{pH} = -\log[\text{H}^+] \][/tex]
Thus,
[tex]\[ [\text{H}^+] = 10^{-1} = 0.1 \text{ M} \][/tex]
4. Calculate the reaction quotient ([tex]\( Q \)[/tex]):
The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q = \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}] \cdot [\text{H}^+]^{14}} \][/tex]
Plugging in the given concentrations:
[tex]\[ [\text{Cr}_2\text{O}_7^{2-}] = 4 \times 10^{-4} \text{ M} \][/tex]
[tex]\[ [\text{Cr}^{3+}] = 2 \times 10^{-2} \text{ M} \][/tex]
[tex]\[ [\text{H}^+] = 0.1 \text{ M} \][/tex]
Thus,
[tex]\[ Q = \frac{(2 \times 10^{-2})^2}{(4 \times 10^{-4}) \cdot (0.1)^{14}} \][/tex]
Simplifying:
[tex]\[ Q = \frac{4 \times 10^{-4}}{4 \times 10^{-4} \cdot 10^{-14}} = \frac{4 \times 10^{-4}}{4 \times 10^{-18}} = 10^{14} = 99999999999999.92 \][/tex]
5. Use the Nernst Equation to find [tex]\( E_{\text{red}} \)[/tex]:
The Nernst equation is:
[tex]\[ E = E^\circ - \frac{0.0591}{n} \log_{10}(Q) \][/tex]
Substituting the known values:
[tex]\[ E = 1.5 - \frac{0.0591}{6} \log_{10}(99999999999999.92) \][/tex]
Evaluate the term:
[tex]\[ \log_{10}(99999999999999.92) \approx 14 \][/tex]
So,
[tex]\[ E = 1.5 - \frac{0.0591}{6} \times 14 = 1.5 - 0.1379 = 1.3621 \text{ V} \][/tex]
### Final Answer:
The reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction is [tex]\( 1.3621 \text{ V} \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.