Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, I'll walk you through the step-by-step solution for calculating the reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction involving [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] and [tex]\( \text{Cr}^{3+} \)[/tex].
### Step-by-Step Solution:
1. Identify Given Data:
- Standard electrode potential, [tex]\( E^\circ = 1.5 \)[/tex] V
- Concentration of [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] is [tex]\( 4 \times 10^{-4} \)[/tex] M
- Concentration of [tex]\( \text{Cr}^{3+} \)[/tex] is [tex]\( 2 \times 10^{-2} \)[/tex] M
- pH of the solution is 1
2. Determine the number of electrons transferred ([tex]\( n \)[/tex]):
The balanced reaction is:
[tex]\[ \text{Cr}_2\text{O}_7^{2-} + 14 \text{H}^+ + 6 \text{e}^- \rightarrow 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O} \][/tex]
From this equation, we see that 6 electrons ([tex]\( n = 6 \)[/tex]) are transferred in the reaction.
3. Calculate the concentration of [tex]\(\text{H}^+\)[/tex] from pH:
The pH is given as 1. Using the definition of pH:
[tex]\[ \text{pH} = -\log[\text{H}^+] \][/tex]
Thus,
[tex]\[ [\text{H}^+] = 10^{-1} = 0.1 \text{ M} \][/tex]
4. Calculate the reaction quotient ([tex]\( Q \)[/tex]):
The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q = \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}] \cdot [\text{H}^+]^{14}} \][/tex]
Plugging in the given concentrations:
[tex]\[ [\text{Cr}_2\text{O}_7^{2-}] = 4 \times 10^{-4} \text{ M} \][/tex]
[tex]\[ [\text{Cr}^{3+}] = 2 \times 10^{-2} \text{ M} \][/tex]
[tex]\[ [\text{H}^+] = 0.1 \text{ M} \][/tex]
Thus,
[tex]\[ Q = \frac{(2 \times 10^{-2})^2}{(4 \times 10^{-4}) \cdot (0.1)^{14}} \][/tex]
Simplifying:
[tex]\[ Q = \frac{4 \times 10^{-4}}{4 \times 10^{-4} \cdot 10^{-14}} = \frac{4 \times 10^{-4}}{4 \times 10^{-18}} = 10^{14} = 99999999999999.92 \][/tex]
5. Use the Nernst Equation to find [tex]\( E_{\text{red}} \)[/tex]:
The Nernst equation is:
[tex]\[ E = E^\circ - \frac{0.0591}{n} \log_{10}(Q) \][/tex]
Substituting the known values:
[tex]\[ E = 1.5 - \frac{0.0591}{6} \log_{10}(99999999999999.92) \][/tex]
Evaluate the term:
[tex]\[ \log_{10}(99999999999999.92) \approx 14 \][/tex]
So,
[tex]\[ E = 1.5 - \frac{0.0591}{6} \times 14 = 1.5 - 0.1379 = 1.3621 \text{ V} \][/tex]
### Final Answer:
The reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction is [tex]\( 1.3621 \text{ V} \)[/tex].
### Step-by-Step Solution:
1. Identify Given Data:
- Standard electrode potential, [tex]\( E^\circ = 1.5 \)[/tex] V
- Concentration of [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] is [tex]\( 4 \times 10^{-4} \)[/tex] M
- Concentration of [tex]\( \text{Cr}^{3+} \)[/tex] is [tex]\( 2 \times 10^{-2} \)[/tex] M
- pH of the solution is 1
2. Determine the number of electrons transferred ([tex]\( n \)[/tex]):
The balanced reaction is:
[tex]\[ \text{Cr}_2\text{O}_7^{2-} + 14 \text{H}^+ + 6 \text{e}^- \rightarrow 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O} \][/tex]
From this equation, we see that 6 electrons ([tex]\( n = 6 \)[/tex]) are transferred in the reaction.
3. Calculate the concentration of [tex]\(\text{H}^+\)[/tex] from pH:
The pH is given as 1. Using the definition of pH:
[tex]\[ \text{pH} = -\log[\text{H}^+] \][/tex]
Thus,
[tex]\[ [\text{H}^+] = 10^{-1} = 0.1 \text{ M} \][/tex]
4. Calculate the reaction quotient ([tex]\( Q \)[/tex]):
The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q = \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}] \cdot [\text{H}^+]^{14}} \][/tex]
Plugging in the given concentrations:
[tex]\[ [\text{Cr}_2\text{O}_7^{2-}] = 4 \times 10^{-4} \text{ M} \][/tex]
[tex]\[ [\text{Cr}^{3+}] = 2 \times 10^{-2} \text{ M} \][/tex]
[tex]\[ [\text{H}^+] = 0.1 \text{ M} \][/tex]
Thus,
[tex]\[ Q = \frac{(2 \times 10^{-2})^2}{(4 \times 10^{-4}) \cdot (0.1)^{14}} \][/tex]
Simplifying:
[tex]\[ Q = \frac{4 \times 10^{-4}}{4 \times 10^{-4} \cdot 10^{-14}} = \frac{4 \times 10^{-4}}{4 \times 10^{-18}} = 10^{14} = 99999999999999.92 \][/tex]
5. Use the Nernst Equation to find [tex]\( E_{\text{red}} \)[/tex]:
The Nernst equation is:
[tex]\[ E = E^\circ - \frac{0.0591}{n} \log_{10}(Q) \][/tex]
Substituting the known values:
[tex]\[ E = 1.5 - \frac{0.0591}{6} \log_{10}(99999999999999.92) \][/tex]
Evaluate the term:
[tex]\[ \log_{10}(99999999999999.92) \approx 14 \][/tex]
So,
[tex]\[ E = 1.5 - \frac{0.0591}{6} \times 14 = 1.5 - 0.1379 = 1.3621 \text{ V} \][/tex]
### Final Answer:
The reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction is [tex]\( 1.3621 \text{ V} \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.