Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, I'll walk you through the step-by-step solution for calculating the reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction involving [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] and [tex]\( \text{Cr}^{3+} \)[/tex].
### Step-by-Step Solution:
1. Identify Given Data:
- Standard electrode potential, [tex]\( E^\circ = 1.5 \)[/tex] V
- Concentration of [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] is [tex]\( 4 \times 10^{-4} \)[/tex] M
- Concentration of [tex]\( \text{Cr}^{3+} \)[/tex] is [tex]\( 2 \times 10^{-2} \)[/tex] M
- pH of the solution is 1
2. Determine the number of electrons transferred ([tex]\( n \)[/tex]):
The balanced reaction is:
[tex]\[ \text{Cr}_2\text{O}_7^{2-} + 14 \text{H}^+ + 6 \text{e}^- \rightarrow 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O} \][/tex]
From this equation, we see that 6 electrons ([tex]\( n = 6 \)[/tex]) are transferred in the reaction.
3. Calculate the concentration of [tex]\(\text{H}^+\)[/tex] from pH:
The pH is given as 1. Using the definition of pH:
[tex]\[ \text{pH} = -\log[\text{H}^+] \][/tex]
Thus,
[tex]\[ [\text{H}^+] = 10^{-1} = 0.1 \text{ M} \][/tex]
4. Calculate the reaction quotient ([tex]\( Q \)[/tex]):
The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q = \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}] \cdot [\text{H}^+]^{14}} \][/tex]
Plugging in the given concentrations:
[tex]\[ [\text{Cr}_2\text{O}_7^{2-}] = 4 \times 10^{-4} \text{ M} \][/tex]
[tex]\[ [\text{Cr}^{3+}] = 2 \times 10^{-2} \text{ M} \][/tex]
[tex]\[ [\text{H}^+] = 0.1 \text{ M} \][/tex]
Thus,
[tex]\[ Q = \frac{(2 \times 10^{-2})^2}{(4 \times 10^{-4}) \cdot (0.1)^{14}} \][/tex]
Simplifying:
[tex]\[ Q = \frac{4 \times 10^{-4}}{4 \times 10^{-4} \cdot 10^{-14}} = \frac{4 \times 10^{-4}}{4 \times 10^{-18}} = 10^{14} = 99999999999999.92 \][/tex]
5. Use the Nernst Equation to find [tex]\( E_{\text{red}} \)[/tex]:
The Nernst equation is:
[tex]\[ E = E^\circ - \frac{0.0591}{n} \log_{10}(Q) \][/tex]
Substituting the known values:
[tex]\[ E = 1.5 - \frac{0.0591}{6} \log_{10}(99999999999999.92) \][/tex]
Evaluate the term:
[tex]\[ \log_{10}(99999999999999.92) \approx 14 \][/tex]
So,
[tex]\[ E = 1.5 - \frac{0.0591}{6} \times 14 = 1.5 - 0.1379 = 1.3621 \text{ V} \][/tex]
### Final Answer:
The reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction is [tex]\( 1.3621 \text{ V} \)[/tex].
### Step-by-Step Solution:
1. Identify Given Data:
- Standard electrode potential, [tex]\( E^\circ = 1.5 \)[/tex] V
- Concentration of [tex]\( \text{Cr}_2\text{O}_7^{2-} \)[/tex] is [tex]\( 4 \times 10^{-4} \)[/tex] M
- Concentration of [tex]\( \text{Cr}^{3+} \)[/tex] is [tex]\( 2 \times 10^{-2} \)[/tex] M
- pH of the solution is 1
2. Determine the number of electrons transferred ([tex]\( n \)[/tex]):
The balanced reaction is:
[tex]\[ \text{Cr}_2\text{O}_7^{2-} + 14 \text{H}^+ + 6 \text{e}^- \rightarrow 2 \text{Cr}^{3+} + 7 \text{H}_2\text{O} \][/tex]
From this equation, we see that 6 electrons ([tex]\( n = 6 \)[/tex]) are transferred in the reaction.
3. Calculate the concentration of [tex]\(\text{H}^+\)[/tex] from pH:
The pH is given as 1. Using the definition of pH:
[tex]\[ \text{pH} = -\log[\text{H}^+] \][/tex]
Thus,
[tex]\[ [\text{H}^+] = 10^{-1} = 0.1 \text{ M} \][/tex]
4. Calculate the reaction quotient ([tex]\( Q \)[/tex]):
The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q = \frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}] \cdot [\text{H}^+]^{14}} \][/tex]
Plugging in the given concentrations:
[tex]\[ [\text{Cr}_2\text{O}_7^{2-}] = 4 \times 10^{-4} \text{ M} \][/tex]
[tex]\[ [\text{Cr}^{3+}] = 2 \times 10^{-2} \text{ M} \][/tex]
[tex]\[ [\text{H}^+] = 0.1 \text{ M} \][/tex]
Thus,
[tex]\[ Q = \frac{(2 \times 10^{-2})^2}{(4 \times 10^{-4}) \cdot (0.1)^{14}} \][/tex]
Simplifying:
[tex]\[ Q = \frac{4 \times 10^{-4}}{4 \times 10^{-4} \cdot 10^{-14}} = \frac{4 \times 10^{-4}}{4 \times 10^{-18}} = 10^{14} = 99999999999999.92 \][/tex]
5. Use the Nernst Equation to find [tex]\( E_{\text{red}} \)[/tex]:
The Nernst equation is:
[tex]\[ E = E^\circ - \frac{0.0591}{n} \log_{10}(Q) \][/tex]
Substituting the known values:
[tex]\[ E = 1.5 - \frac{0.0591}{6} \log_{10}(99999999999999.92) \][/tex]
Evaluate the term:
[tex]\[ \log_{10}(99999999999999.92) \approx 14 \][/tex]
So,
[tex]\[ E = 1.5 - \frac{0.0591}{6} \times 14 = 1.5 - 0.1379 = 1.3621 \text{ V} \][/tex]
### Final Answer:
The reduction potential [tex]\( E_{\text{red}} \)[/tex] for the given half-cell reaction is [tex]\( 1.3621 \text{ V} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.