Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let’s solve the equation [tex]\(2^{x+1} = e^{1-x}\)[/tex] step by step.
1. Rewrite the equation: Start with the original equation.
[tex]\[ 2^{x+1} = e^{1-x} \][/tex]
2. Introduce logarithms: To simplify, we will take the natural logarithm ([tex]\(\ln\)[/tex]) on both sides of the equation. This allows us to use the properties of logarithms to simplify the exponents.
[tex]\[ \ln(2^{x+1}) = \ln(e^{1-x}) \][/tex]
3. Apply the logarithm properties: Use the power rule of logarithms, which states [tex]\(\ln(a^b) = b \ln(a)\)[/tex], on both sides of the equation.
[tex]\[ (x+1)\ln(2) = (1-x)\ln(e) \][/tex]
4. Simplify the equation: Recall that [tex]\(\ln(e) = 1\)[/tex]. Therefore, the equation simplifies to:
[tex]\[ (x+1)\ln(2) = 1-x \][/tex]
5. Distribute the logarithms and simplify: Expand and rearrange the terms to isolate [tex]\(x\)[/tex].
[tex]\[ x \ln(2) + \ln(2) = 1 - x \][/tex]
[tex]\[ x \ln(2) + x = 1 - \ln(2) \][/tex]
6. Combine like terms: Factor out [tex]\(x\)[/tex] on the left side.
[tex]\[ x(\ln(2) + 1) = 1 - \ln(2) \][/tex]
7. Solve for [tex]\(x\)[/tex]: Divide both sides by [tex]\((\ln(2) + 1)\)[/tex] to isolate [tex]\(x\)[/tex].
[tex]\[ x = \frac{1 - \ln(2)}{\ln(2) + 1} \][/tex]
So, the solution to the equation [tex]\(2^{x+1} = e^{1-x}\)[/tex] is:
[tex]\[ x = \frac{1 - \ln(2)}{\ln(2) + 1} \][/tex]
This is the value of [tex]\(x\)[/tex] that satisfies the given equation.
1. Rewrite the equation: Start with the original equation.
[tex]\[ 2^{x+1} = e^{1-x} \][/tex]
2. Introduce logarithms: To simplify, we will take the natural logarithm ([tex]\(\ln\)[/tex]) on both sides of the equation. This allows us to use the properties of logarithms to simplify the exponents.
[tex]\[ \ln(2^{x+1}) = \ln(e^{1-x}) \][/tex]
3. Apply the logarithm properties: Use the power rule of logarithms, which states [tex]\(\ln(a^b) = b \ln(a)\)[/tex], on both sides of the equation.
[tex]\[ (x+1)\ln(2) = (1-x)\ln(e) \][/tex]
4. Simplify the equation: Recall that [tex]\(\ln(e) = 1\)[/tex]. Therefore, the equation simplifies to:
[tex]\[ (x+1)\ln(2) = 1-x \][/tex]
5. Distribute the logarithms and simplify: Expand and rearrange the terms to isolate [tex]\(x\)[/tex].
[tex]\[ x \ln(2) + \ln(2) = 1 - x \][/tex]
[tex]\[ x \ln(2) + x = 1 - \ln(2) \][/tex]
6. Combine like terms: Factor out [tex]\(x\)[/tex] on the left side.
[tex]\[ x(\ln(2) + 1) = 1 - \ln(2) \][/tex]
7. Solve for [tex]\(x\)[/tex]: Divide both sides by [tex]\((\ln(2) + 1)\)[/tex] to isolate [tex]\(x\)[/tex].
[tex]\[ x = \frac{1 - \ln(2)}{\ln(2) + 1} \][/tex]
So, the solution to the equation [tex]\(2^{x+1} = e^{1-x}\)[/tex] is:
[tex]\[ x = \frac{1 - \ln(2)}{\ln(2) + 1} \][/tex]
This is the value of [tex]\(x\)[/tex] that satisfies the given equation.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.