Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let’s solve the equation [tex]\(2^{x+1} = e^{1-x}\)[/tex] step by step.
1. Rewrite the equation: Start with the original equation.
[tex]\[ 2^{x+1} = e^{1-x} \][/tex]
2. Introduce logarithms: To simplify, we will take the natural logarithm ([tex]\(\ln\)[/tex]) on both sides of the equation. This allows us to use the properties of logarithms to simplify the exponents.
[tex]\[ \ln(2^{x+1}) = \ln(e^{1-x}) \][/tex]
3. Apply the logarithm properties: Use the power rule of logarithms, which states [tex]\(\ln(a^b) = b \ln(a)\)[/tex], on both sides of the equation.
[tex]\[ (x+1)\ln(2) = (1-x)\ln(e) \][/tex]
4. Simplify the equation: Recall that [tex]\(\ln(e) = 1\)[/tex]. Therefore, the equation simplifies to:
[tex]\[ (x+1)\ln(2) = 1-x \][/tex]
5. Distribute the logarithms and simplify: Expand and rearrange the terms to isolate [tex]\(x\)[/tex].
[tex]\[ x \ln(2) + \ln(2) = 1 - x \][/tex]
[tex]\[ x \ln(2) + x = 1 - \ln(2) \][/tex]
6. Combine like terms: Factor out [tex]\(x\)[/tex] on the left side.
[tex]\[ x(\ln(2) + 1) = 1 - \ln(2) \][/tex]
7. Solve for [tex]\(x\)[/tex]: Divide both sides by [tex]\((\ln(2) + 1)\)[/tex] to isolate [tex]\(x\)[/tex].
[tex]\[ x = \frac{1 - \ln(2)}{\ln(2) + 1} \][/tex]
So, the solution to the equation [tex]\(2^{x+1} = e^{1-x}\)[/tex] is:
[tex]\[ x = \frac{1 - \ln(2)}{\ln(2) + 1} \][/tex]
This is the value of [tex]\(x\)[/tex] that satisfies the given equation.
1. Rewrite the equation: Start with the original equation.
[tex]\[ 2^{x+1} = e^{1-x} \][/tex]
2. Introduce logarithms: To simplify, we will take the natural logarithm ([tex]\(\ln\)[/tex]) on both sides of the equation. This allows us to use the properties of logarithms to simplify the exponents.
[tex]\[ \ln(2^{x+1}) = \ln(e^{1-x}) \][/tex]
3. Apply the logarithm properties: Use the power rule of logarithms, which states [tex]\(\ln(a^b) = b \ln(a)\)[/tex], on both sides of the equation.
[tex]\[ (x+1)\ln(2) = (1-x)\ln(e) \][/tex]
4. Simplify the equation: Recall that [tex]\(\ln(e) = 1\)[/tex]. Therefore, the equation simplifies to:
[tex]\[ (x+1)\ln(2) = 1-x \][/tex]
5. Distribute the logarithms and simplify: Expand and rearrange the terms to isolate [tex]\(x\)[/tex].
[tex]\[ x \ln(2) + \ln(2) = 1 - x \][/tex]
[tex]\[ x \ln(2) + x = 1 - \ln(2) \][/tex]
6. Combine like terms: Factor out [tex]\(x\)[/tex] on the left side.
[tex]\[ x(\ln(2) + 1) = 1 - \ln(2) \][/tex]
7. Solve for [tex]\(x\)[/tex]: Divide both sides by [tex]\((\ln(2) + 1)\)[/tex] to isolate [tex]\(x\)[/tex].
[tex]\[ x = \frac{1 - \ln(2)}{\ln(2) + 1} \][/tex]
So, the solution to the equation [tex]\(2^{x+1} = e^{1-x}\)[/tex] is:
[tex]\[ x = \frac{1 - \ln(2)}{\ln(2) + 1} \][/tex]
This is the value of [tex]\(x\)[/tex] that satisfies the given equation.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.