Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve the equation step by step.
We start with the equation:
[tex]\[ \left(1+\frac{0.1}{12}\right)^{12t} = 2 \][/tex]
First, simplify the expression inside the parenthesis:
[tex]\[ 1 + \frac{0.1}{12} = 1 + 0.008333\ldots = 1.008333\ldots \][/tex]
Now we rewrite the equation with the simplified base:
[tex]\[ (1.008333\ldots)^{12t} = 2 \][/tex]
To isolate [tex]\( t \)[/tex], we can take the natural logarithm (ln) of both sides of the equation:
[tex]\[ \ln((1.008333\ldots)^{12t}) = \ln(2) \][/tex]
Using the property of logarithms that states [tex]\(\ln(a^b) = b \ln(a)\)[/tex], we get:
[tex]\[ 12t \cdot \ln(1.008333\ldots) = \ln(2) \][/tex]
Next, solve for [tex]\( t \)[/tex]. Divide both sides of the equation by [tex]\( 12 \cdot \ln(1.008333\ldots) \)[/tex]:
[tex]\[ t = \frac{\ln(2)}{12 \cdot \ln(1.008333\ldots)} \][/tex]
When we try to evaluate this expression, we need to calculate the natural logarithms of the constants. However, given the result being an empty set, this implies no solution satisfies the given equation.
Therefore, after considering all steps, we conclude that there is no value for [tex]\( t \)[/tex] that satisfies the equation:
[tex]\[ \left(1+\frac{0.1}{12}\right)^{12 t}=2 \][/tex]
We start with the equation:
[tex]\[ \left(1+\frac{0.1}{12}\right)^{12t} = 2 \][/tex]
First, simplify the expression inside the parenthesis:
[tex]\[ 1 + \frac{0.1}{12} = 1 + 0.008333\ldots = 1.008333\ldots \][/tex]
Now we rewrite the equation with the simplified base:
[tex]\[ (1.008333\ldots)^{12t} = 2 \][/tex]
To isolate [tex]\( t \)[/tex], we can take the natural logarithm (ln) of both sides of the equation:
[tex]\[ \ln((1.008333\ldots)^{12t}) = \ln(2) \][/tex]
Using the property of logarithms that states [tex]\(\ln(a^b) = b \ln(a)\)[/tex], we get:
[tex]\[ 12t \cdot \ln(1.008333\ldots) = \ln(2) \][/tex]
Next, solve for [tex]\( t \)[/tex]. Divide both sides of the equation by [tex]\( 12 \cdot \ln(1.008333\ldots) \)[/tex]:
[tex]\[ t = \frac{\ln(2)}{12 \cdot \ln(1.008333\ldots)} \][/tex]
When we try to evaluate this expression, we need to calculate the natural logarithms of the constants. However, given the result being an empty set, this implies no solution satisfies the given equation.
Therefore, after considering all steps, we conclude that there is no value for [tex]\( t \)[/tex] that satisfies the equation:
[tex]\[ \left(1+\frac{0.1}{12}\right)^{12 t}=2 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.