Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation [tex]\(\log_4(x) - \log_4(x - 1) = \frac{1}{2}\)[/tex], let's proceed step-by-step.
### Step 1: Use the properties of logarithms
Recall the logarithmic property: [tex]\(\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right)\)[/tex].
Applying this property:
[tex]\[ \log_4(x) - \log_4(x - 1) = \log_4\left(\frac{x}{x-1}\right) \][/tex]
Therefore, the given equation becomes:
[tex]\[ \log_4\left(\frac{x}{x-1}\right) = \frac{1}{2} \][/tex]
### Step 2: Convert the logarithmic equation to an exponential equation
By definition of logarithms, if [tex]\(\log_b(a) = c\)[/tex], then [tex]\(b^c = a\)[/tex].
We convert the equation [tex]\(\log_4\left(\frac{x}{x-1}\right) = \frac{1}{2}\)[/tex] to its exponential form:
[tex]\[ 4^{1/2} = \frac{x}{x-1} \][/tex]
### Step 3: Simplify the exponential equation
Recall that [tex]\(4^{1/2} = \sqrt{4} = 2\)[/tex]:
[tex]\[ 2 = \frac{x}{x-1} \][/tex]
### Step 4: Solve the resulting equation for [tex]\(x\)[/tex]
Set up the equation:
[tex]\[ 2 = \frac{x}{x-1} \][/tex]
To clear the fraction, multiply both sides by [tex]\(x - 1\)[/tex]:
[tex]\[ 2(x - 1) = x \][/tex]
Distribute and simplify:
[tex]\[ 2x - 2 = x \][/tex]
Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 2x - x - 2 = 0 \][/tex]
Combine like terms:
[tex]\[ x - 2 = 0 \][/tex]
Add 2 to both sides:
[tex]\[ x = 2 \][/tex]
### Step 5: Verify the solution
It is always important to check that the solution satisfies the original equation.
Substitute [tex]\(x = 2\)[/tex] back into the original equation:
[tex]\[ \log_4(2) - \log_4(1) = \frac{1}{2} \][/tex]
Recall that [tex]\(\log_b(1) = 0\)[/tex] for any base [tex]\(b\)[/tex]:
[tex]\[ \log_4(2) - 0 = \frac{1}{2} \][/tex]
Simplifying, we have:
[tex]\[ \log_4(2) = \frac{1}{2} \][/tex]
This is true since [tex]\(4^{1/2} = 2\)[/tex].
Therefore, the solution [tex]\(x = 2\)[/tex] satisfies the original equation.
### Conclusion
The solution to the equation [tex]\(\log_4(x) - \log_4(x - 1) = \frac{1}{2}\)[/tex] is:
[tex]\[ x = 2 \][/tex]
### Step 1: Use the properties of logarithms
Recall the logarithmic property: [tex]\(\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right)\)[/tex].
Applying this property:
[tex]\[ \log_4(x) - \log_4(x - 1) = \log_4\left(\frac{x}{x-1}\right) \][/tex]
Therefore, the given equation becomes:
[tex]\[ \log_4\left(\frac{x}{x-1}\right) = \frac{1}{2} \][/tex]
### Step 2: Convert the logarithmic equation to an exponential equation
By definition of logarithms, if [tex]\(\log_b(a) = c\)[/tex], then [tex]\(b^c = a\)[/tex].
We convert the equation [tex]\(\log_4\left(\frac{x}{x-1}\right) = \frac{1}{2}\)[/tex] to its exponential form:
[tex]\[ 4^{1/2} = \frac{x}{x-1} \][/tex]
### Step 3: Simplify the exponential equation
Recall that [tex]\(4^{1/2} = \sqrt{4} = 2\)[/tex]:
[tex]\[ 2 = \frac{x}{x-1} \][/tex]
### Step 4: Solve the resulting equation for [tex]\(x\)[/tex]
Set up the equation:
[tex]\[ 2 = \frac{x}{x-1} \][/tex]
To clear the fraction, multiply both sides by [tex]\(x - 1\)[/tex]:
[tex]\[ 2(x - 1) = x \][/tex]
Distribute and simplify:
[tex]\[ 2x - 2 = x \][/tex]
Subtract [tex]\(x\)[/tex] from both sides:
[tex]\[ 2x - x - 2 = 0 \][/tex]
Combine like terms:
[tex]\[ x - 2 = 0 \][/tex]
Add 2 to both sides:
[tex]\[ x = 2 \][/tex]
### Step 5: Verify the solution
It is always important to check that the solution satisfies the original equation.
Substitute [tex]\(x = 2\)[/tex] back into the original equation:
[tex]\[ \log_4(2) - \log_4(1) = \frac{1}{2} \][/tex]
Recall that [tex]\(\log_b(1) = 0\)[/tex] for any base [tex]\(b\)[/tex]:
[tex]\[ \log_4(2) - 0 = \frac{1}{2} \][/tex]
Simplifying, we have:
[tex]\[ \log_4(2) = \frac{1}{2} \][/tex]
This is true since [tex]\(4^{1/2} = 2\)[/tex].
Therefore, the solution [tex]\(x = 2\)[/tex] satisfies the original equation.
### Conclusion
The solution to the equation [tex]\(\log_4(x) - \log_4(x - 1) = \frac{1}{2}\)[/tex] is:
[tex]\[ x = 2 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.