Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the equation [tex]\( 2^{5x - 1} = 3^x \)[/tex], follow these steps:
1. Understand the nature of the equation:
We have an equation involving exponential functions with different bases, [tex]\(2\)[/tex] and [tex]\(3\)[/tex].
2. Transform the equation using logarithms:
To handle the exponents with different bases, we apply logarithms (natural logarithms, for simplicity):
[tex]\[ \ln(2^{5x - 1}) = \ln(3^x) \][/tex]
3. Use logarithmic properties to simplify:
Apply the property of logarithms that allows you to bring down the exponent:
[tex]\[ (5x - 1) \ln(2) = x \ln(3) \][/tex]
4. Rearrange to isolate [tex]\(x\)[/tex]:
Let's distribute the logarithm terms and solve for [tex]\(x\)[/tex]:
[tex]\[ 5x \ln(2) - \ln(2) = x \ln(3) \][/tex]
[tex]\[ 5x \ln(2) - x \ln(3) = \ln(2) \][/tex]
5. Factor [tex]\(x\)[/tex] from the left-hand side:
[tex]\[ x (5 \ln(2) - \ln(3)) = \ln(2) \][/tex]
6. Solve for [tex]\(x\)[/tex]:
Divide both sides of the equation by [tex]\((5 \ln(2) - \ln(3))\)[/tex]:
[tex]\[ x = \frac{\ln(2)}{5 \ln(2) - \ln(3)} \][/tex]
7. Express in a simpler form:
Recognize that the solution can be expressed in terms of another logarithm. Here, we simplify:
[tex]\[ x = \log_{32/3}(2) \][/tex]
Note that [tex]\(\log_{32/3}(2)\)[/tex] can be interpreted using the change of base formula, but it effectively captures the solution in a compact form.
The precise solution is:
[tex]\[ x = \log_{32/3}(2) \][/tex]
1. Understand the nature of the equation:
We have an equation involving exponential functions with different bases, [tex]\(2\)[/tex] and [tex]\(3\)[/tex].
2. Transform the equation using logarithms:
To handle the exponents with different bases, we apply logarithms (natural logarithms, for simplicity):
[tex]\[ \ln(2^{5x - 1}) = \ln(3^x) \][/tex]
3. Use logarithmic properties to simplify:
Apply the property of logarithms that allows you to bring down the exponent:
[tex]\[ (5x - 1) \ln(2) = x \ln(3) \][/tex]
4. Rearrange to isolate [tex]\(x\)[/tex]:
Let's distribute the logarithm terms and solve for [tex]\(x\)[/tex]:
[tex]\[ 5x \ln(2) - \ln(2) = x \ln(3) \][/tex]
[tex]\[ 5x \ln(2) - x \ln(3) = \ln(2) \][/tex]
5. Factor [tex]\(x\)[/tex] from the left-hand side:
[tex]\[ x (5 \ln(2) - \ln(3)) = \ln(2) \][/tex]
6. Solve for [tex]\(x\)[/tex]:
Divide both sides of the equation by [tex]\((5 \ln(2) - \ln(3))\)[/tex]:
[tex]\[ x = \frac{\ln(2)}{5 \ln(2) - \ln(3)} \][/tex]
7. Express in a simpler form:
Recognize that the solution can be expressed in terms of another logarithm. Here, we simplify:
[tex]\[ x = \log_{32/3}(2) \][/tex]
Note that [tex]\(\log_{32/3}(2)\)[/tex] can be interpreted using the change of base formula, but it effectively captures the solution in a compact form.
The precise solution is:
[tex]\[ x = \log_{32/3}(2) \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.