Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the equation [tex]\( 2^{5x - 1} = 3^x \)[/tex], follow these steps:
1. Understand the nature of the equation:
We have an equation involving exponential functions with different bases, [tex]\(2\)[/tex] and [tex]\(3\)[/tex].
2. Transform the equation using logarithms:
To handle the exponents with different bases, we apply logarithms (natural logarithms, for simplicity):
[tex]\[ \ln(2^{5x - 1}) = \ln(3^x) \][/tex]
3. Use logarithmic properties to simplify:
Apply the property of logarithms that allows you to bring down the exponent:
[tex]\[ (5x - 1) \ln(2) = x \ln(3) \][/tex]
4. Rearrange to isolate [tex]\(x\)[/tex]:
Let's distribute the logarithm terms and solve for [tex]\(x\)[/tex]:
[tex]\[ 5x \ln(2) - \ln(2) = x \ln(3) \][/tex]
[tex]\[ 5x \ln(2) - x \ln(3) = \ln(2) \][/tex]
5. Factor [tex]\(x\)[/tex] from the left-hand side:
[tex]\[ x (5 \ln(2) - \ln(3)) = \ln(2) \][/tex]
6. Solve for [tex]\(x\)[/tex]:
Divide both sides of the equation by [tex]\((5 \ln(2) - \ln(3))\)[/tex]:
[tex]\[ x = \frac{\ln(2)}{5 \ln(2) - \ln(3)} \][/tex]
7. Express in a simpler form:
Recognize that the solution can be expressed in terms of another logarithm. Here, we simplify:
[tex]\[ x = \log_{32/3}(2) \][/tex]
Note that [tex]\(\log_{32/3}(2)\)[/tex] can be interpreted using the change of base formula, but it effectively captures the solution in a compact form.
The precise solution is:
[tex]\[ x = \log_{32/3}(2) \][/tex]
1. Understand the nature of the equation:
We have an equation involving exponential functions with different bases, [tex]\(2\)[/tex] and [tex]\(3\)[/tex].
2. Transform the equation using logarithms:
To handle the exponents with different bases, we apply logarithms (natural logarithms, for simplicity):
[tex]\[ \ln(2^{5x - 1}) = \ln(3^x) \][/tex]
3. Use logarithmic properties to simplify:
Apply the property of logarithms that allows you to bring down the exponent:
[tex]\[ (5x - 1) \ln(2) = x \ln(3) \][/tex]
4. Rearrange to isolate [tex]\(x\)[/tex]:
Let's distribute the logarithm terms and solve for [tex]\(x\)[/tex]:
[tex]\[ 5x \ln(2) - \ln(2) = x \ln(3) \][/tex]
[tex]\[ 5x \ln(2) - x \ln(3) = \ln(2) \][/tex]
5. Factor [tex]\(x\)[/tex] from the left-hand side:
[tex]\[ x (5 \ln(2) - \ln(3)) = \ln(2) \][/tex]
6. Solve for [tex]\(x\)[/tex]:
Divide both sides of the equation by [tex]\((5 \ln(2) - \ln(3))\)[/tex]:
[tex]\[ x = \frac{\ln(2)}{5 \ln(2) - \ln(3)} \][/tex]
7. Express in a simpler form:
Recognize that the solution can be expressed in terms of another logarithm. Here, we simplify:
[tex]\[ x = \log_{32/3}(2) \][/tex]
Note that [tex]\(\log_{32/3}(2)\)[/tex] can be interpreted using the change of base formula, but it effectively captures the solution in a compact form.
The precise solution is:
[tex]\[ x = \log_{32/3}(2) \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.