Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Find the asymptotes of the curve [tex]y = \sqrt{1+x^2} \sin \frac{1}{x}[/tex].

Sagot :

To find the asymptotes of the curve [tex]\( y=\sqrt{1+x^2} \sin \frac{1}{x} \)[/tex], we need to analyze the behavior of the function as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] and [tex]\( -\infty \)[/tex].

### Step-by-Step Solution:

1. Identify the components of the function:
- The function is composed of two parts: [tex]\( \sqrt{1+x^2} \)[/tex] and [tex]\( \sin \frac{1}{x} \)[/tex].

2. Examine the behavior as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex]:
- Consider the term [tex]\( \sqrt{1+x^2} \)[/tex]:
[tex]\[ \sqrt{1+x^2} \approx x \text{ as } x \to \infty \text{ and } x \to -\infty \][/tex]
- Now, consider the behavior of [tex]\( \sin \frac{1}{x} \)[/tex]:
[tex]\[ \sin \frac{1}{x} \text{ oscillates between } -1 \text{ and } 1 \text{ as } x \to \infty \text{ and } x \to -\infty \][/tex]

3. Combine the behaviors:
- As [tex]\( x \to \infty \)[/tex], the product [tex]\( \sqrt{1+x^2} \sin \frac{1}{x} \)[/tex] would oscillate between [tex]\( \sqrt{1+x^2} \cdot (-1) \)[/tex] and [tex]\( \sqrt{1+x^2} \cdot (+1) \)[/tex], which simplifies to:
[tex]\[ -\sqrt{1+x^2} \leq \sqrt{1+x^2} \sin \frac{1}{x} \leq \sqrt{1+x^2} \][/tex]
- Since [tex]\( \sqrt{1+x^2} \approx x \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex], we have:
[tex]\[ -x \leq \sqrt{1+x^2} \sin \frac{1}{x} \leq x \][/tex]

4. Calculate the limits to confirm the end behavior:
- The limit of [tex]\( y \)[/tex] as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} \sqrt{1+x^2} \sin \frac{1}{x} = 1 \][/tex]
- The limit of [tex]\( y \)[/tex] as [tex]\( x \to -\infty \)[/tex]:
[tex]\[ \lim_{x \to -\infty} \sqrt{1+x^2} \sin \frac{1}{x} = -1 \][/tex]

### Conclusion:
There are no vertical or horizontal asymptotes in the classical sense, but the function approaches the lines [tex]\( y = 1 \)[/tex] and [tex]\( y = -1 \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex], respectively. Therefore, these lines can be interpreted as the horizontal boundary-like asymptotes for the behavior of the given function at infinity.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.