Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the asymptotes of the curve [tex]\( y=\sqrt{1+x^2} \sin \frac{1}{x} \)[/tex], we need to analyze the behavior of the function as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] and [tex]\( -\infty \)[/tex].
### Step-by-Step Solution:
1. Identify the components of the function:
- The function is composed of two parts: [tex]\( \sqrt{1+x^2} \)[/tex] and [tex]\( \sin \frac{1}{x} \)[/tex].
2. Examine the behavior as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex]:
- Consider the term [tex]\( \sqrt{1+x^2} \)[/tex]:
[tex]\[ \sqrt{1+x^2} \approx x \text{ as } x \to \infty \text{ and } x \to -\infty \][/tex]
- Now, consider the behavior of [tex]\( \sin \frac{1}{x} \)[/tex]:
[tex]\[ \sin \frac{1}{x} \text{ oscillates between } -1 \text{ and } 1 \text{ as } x \to \infty \text{ and } x \to -\infty \][/tex]
3. Combine the behaviors:
- As [tex]\( x \to \infty \)[/tex], the product [tex]\( \sqrt{1+x^2} \sin \frac{1}{x} \)[/tex] would oscillate between [tex]\( \sqrt{1+x^2} \cdot (-1) \)[/tex] and [tex]\( \sqrt{1+x^2} \cdot (+1) \)[/tex], which simplifies to:
[tex]\[ -\sqrt{1+x^2} \leq \sqrt{1+x^2} \sin \frac{1}{x} \leq \sqrt{1+x^2} \][/tex]
- Since [tex]\( \sqrt{1+x^2} \approx x \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex], we have:
[tex]\[ -x \leq \sqrt{1+x^2} \sin \frac{1}{x} \leq x \][/tex]
4. Calculate the limits to confirm the end behavior:
- The limit of [tex]\( y \)[/tex] as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} \sqrt{1+x^2} \sin \frac{1}{x} = 1 \][/tex]
- The limit of [tex]\( y \)[/tex] as [tex]\( x \to -\infty \)[/tex]:
[tex]\[ \lim_{x \to -\infty} \sqrt{1+x^2} \sin \frac{1}{x} = -1 \][/tex]
### Conclusion:
There are no vertical or horizontal asymptotes in the classical sense, but the function approaches the lines [tex]\( y = 1 \)[/tex] and [tex]\( y = -1 \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex], respectively. Therefore, these lines can be interpreted as the horizontal boundary-like asymptotes for the behavior of the given function at infinity.
### Step-by-Step Solution:
1. Identify the components of the function:
- The function is composed of two parts: [tex]\( \sqrt{1+x^2} \)[/tex] and [tex]\( \sin \frac{1}{x} \)[/tex].
2. Examine the behavior as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex]:
- Consider the term [tex]\( \sqrt{1+x^2} \)[/tex]:
[tex]\[ \sqrt{1+x^2} \approx x \text{ as } x \to \infty \text{ and } x \to -\infty \][/tex]
- Now, consider the behavior of [tex]\( \sin \frac{1}{x} \)[/tex]:
[tex]\[ \sin \frac{1}{x} \text{ oscillates between } -1 \text{ and } 1 \text{ as } x \to \infty \text{ and } x \to -\infty \][/tex]
3. Combine the behaviors:
- As [tex]\( x \to \infty \)[/tex], the product [tex]\( \sqrt{1+x^2} \sin \frac{1}{x} \)[/tex] would oscillate between [tex]\( \sqrt{1+x^2} \cdot (-1) \)[/tex] and [tex]\( \sqrt{1+x^2} \cdot (+1) \)[/tex], which simplifies to:
[tex]\[ -\sqrt{1+x^2} \leq \sqrt{1+x^2} \sin \frac{1}{x} \leq \sqrt{1+x^2} \][/tex]
- Since [tex]\( \sqrt{1+x^2} \approx x \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex], we have:
[tex]\[ -x \leq \sqrt{1+x^2} \sin \frac{1}{x} \leq x \][/tex]
4. Calculate the limits to confirm the end behavior:
- The limit of [tex]\( y \)[/tex] as [tex]\( x \to \infty \)[/tex]:
[tex]\[ \lim_{x \to \infty} \sqrt{1+x^2} \sin \frac{1}{x} = 1 \][/tex]
- The limit of [tex]\( y \)[/tex] as [tex]\( x \to -\infty \)[/tex]:
[tex]\[ \lim_{x \to -\infty} \sqrt{1+x^2} \sin \frac{1}{x} = -1 \][/tex]
### Conclusion:
There are no vertical or horizontal asymptotes in the classical sense, but the function approaches the lines [tex]\( y = 1 \)[/tex] and [tex]\( y = -1 \)[/tex] as [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex], respectively. Therefore, these lines can be interpreted as the horizontal boundary-like asymptotes for the behavior of the given function at infinity.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.