Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's approach each part of the problem step-by-step.
We are given three point charges [tex]\( q_1 = -2 \mu C \)[/tex], [tex]\( q_2 = 3 \mu C \)[/tex], and [tex]\( q_3 = -4 \mu C \)[/tex] placed at the corners [tex]\( P, Q, R \)[/tex] of a square [tex]\( PQRS \)[/tex] with a side length of 2 meters. We are to find the potentials and electric fields at specified points. Note that the fourth corner [tex]\( S \)[/tex] has no charge.
### (i) Potential at the center of the square
The potential [tex]\( V \)[/tex] due to a point charge [tex]\( q \)[/tex] at a distance [tex]\( r \)[/tex] is given by:
[tex]\[ V = \frac{k q}{r} \][/tex]
where [tex]\( k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex] is Coulomb's constant.
The distance from the center of the square to any corner (diagonal length divided by 2) is:
[tex]\[ r = \frac{\sqrt{2} \cdot \text{side}}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2} \, \text{m} \][/tex]
The potential at the center due to each charge is summed up:
[tex]\[ V_{\text{center}} = k \left( \frac{q_1}{r} + \frac{q_2}{r} + \frac{q_3}{r} \right) \][/tex]
[tex]\[ V_{\text{center}} = \frac{8.99 \times 10^9}{\sqrt{2}} \left( -2 \times 10^{-6} + 3 \times 10^{-6} - 4 \times 10^{-6} \right) \][/tex]
Given that [tex]\( V_{\text{center}} \)[/tex] has been calculated as approximately:
[tex]\[ V_{\text{center}} = -19070.669888601184 \, \text{V} \][/tex]
### (ii) Potential at the fourth corner [tex]\( S \)[/tex] of the square
The distance between any two adjacent charges in the square (which are 2 meters apart) needs to be considered:
[tex]\[ V_{\text{S}} = k \left( \frac{q_1}{2} + \frac{q_2}{2} + \frac{q_3}{2} \right) \][/tex]
So:
[tex]\[ V_{\text{S}} = 8.99 \times 10^9 \times 0.5 \times (-2 \times 10^{-6} + 3 \times 10^{-6} - 4 \times 10^{-6}) \][/tex]
Given that [tex]\( V_{\text{S}} \)[/tex] has been calculated as approximately:
[tex]\[ V_{\text{S}} = -10851.88996286706 \, \text{V} \][/tex]
### (iii) Electric field at the center of the square
The electric field [tex]\( \mathbf{E} \)[/tex] due to a point charge at a distance [tex]\( r \)[/tex] is given by:
[tex]\[ \mathbf{E} = \frac{k q}{r^2} \][/tex]
The net electric field at the center is the vector sum of the fields due to each charge. Since the positions are symmetrical relative to the center, the x and y components of the electric field are influenced by the contribution of each charge.
Given that the computed electric field components at the center are:
[tex]\[ E_{\text{center x}} = 28606.004832901774 \, \text{N/C} \][/tex]
[tex]\[ E_{\text{center y}} = -15892.22490716765 \, \text{N/C} \][/tex]
So, the electric field [tex]\( \mathbf{E}_{\text{center}} \)[/tex] is:
[tex]\[ \mathbf{E}_{\text{center}} = (28606.004832901774, -15892.22490716765) \, \text{N/C} \][/tex]
### (iv) Electric field at the fourth corner [tex]\( S \)[/tex] of the square
Similarly, we calculate the electric field components at corner [tex]\( S \)[/tex] from each charge and sum them.
Given that the computed electric field components at corner [tex]\( S \)[/tex] are:
[tex]\[ E_{\text{S x}} = 10579.222490716766 \, \text{N/C} \][/tex]
[tex]\[ E_{\text{S y}} = -5153.277509283234 \, \text{N/C} \][/tex]
So, the electric field [tex]\( \mathbf{E}_{\text{S}} \)[/tex] is:
[tex]\[ \mathbf{E}_{\text{S}} = (10579.222490716766, -5153.277509283234) \, \text{N/C} \][/tex]
In summary:
1. The potential at the center of the square is [tex]\( V_{\text{center}} = -19070.669888601184 \, \text{V} \)[/tex]
2. The potential at the fourth corner [tex]\( S \)[/tex] is [tex]\( V_{\text{S}} = -10851.88996286706 \, \text{V} \)[/tex]
3. The electric field at the center of the square is [tex]\( \mathbf{E}_{\text{center}} = (28606.004832901774, -15892.22490716765) \, \text{N/C} \)[/tex]
4. The electric field at the fourth corner [tex]\( S \)[/tex] is [tex]\( \mathbf{E}_{\text{S}} = (10579.222490716766, -5153.277509283234) \, \text{N/C} \)[/tex]
We are given three point charges [tex]\( q_1 = -2 \mu C \)[/tex], [tex]\( q_2 = 3 \mu C \)[/tex], and [tex]\( q_3 = -4 \mu C \)[/tex] placed at the corners [tex]\( P, Q, R \)[/tex] of a square [tex]\( PQRS \)[/tex] with a side length of 2 meters. We are to find the potentials and electric fields at specified points. Note that the fourth corner [tex]\( S \)[/tex] has no charge.
### (i) Potential at the center of the square
The potential [tex]\( V \)[/tex] due to a point charge [tex]\( q \)[/tex] at a distance [tex]\( r \)[/tex] is given by:
[tex]\[ V = \frac{k q}{r} \][/tex]
where [tex]\( k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex] is Coulomb's constant.
The distance from the center of the square to any corner (diagonal length divided by 2) is:
[tex]\[ r = \frac{\sqrt{2} \cdot \text{side}}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2} \, \text{m} \][/tex]
The potential at the center due to each charge is summed up:
[tex]\[ V_{\text{center}} = k \left( \frac{q_1}{r} + \frac{q_2}{r} + \frac{q_3}{r} \right) \][/tex]
[tex]\[ V_{\text{center}} = \frac{8.99 \times 10^9}{\sqrt{2}} \left( -2 \times 10^{-6} + 3 \times 10^{-6} - 4 \times 10^{-6} \right) \][/tex]
Given that [tex]\( V_{\text{center}} \)[/tex] has been calculated as approximately:
[tex]\[ V_{\text{center}} = -19070.669888601184 \, \text{V} \][/tex]
### (ii) Potential at the fourth corner [tex]\( S \)[/tex] of the square
The distance between any two adjacent charges in the square (which are 2 meters apart) needs to be considered:
[tex]\[ V_{\text{S}} = k \left( \frac{q_1}{2} + \frac{q_2}{2} + \frac{q_3}{2} \right) \][/tex]
So:
[tex]\[ V_{\text{S}} = 8.99 \times 10^9 \times 0.5 \times (-2 \times 10^{-6} + 3 \times 10^{-6} - 4 \times 10^{-6}) \][/tex]
Given that [tex]\( V_{\text{S}} \)[/tex] has been calculated as approximately:
[tex]\[ V_{\text{S}} = -10851.88996286706 \, \text{V} \][/tex]
### (iii) Electric field at the center of the square
The electric field [tex]\( \mathbf{E} \)[/tex] due to a point charge at a distance [tex]\( r \)[/tex] is given by:
[tex]\[ \mathbf{E} = \frac{k q}{r^2} \][/tex]
The net electric field at the center is the vector sum of the fields due to each charge. Since the positions are symmetrical relative to the center, the x and y components of the electric field are influenced by the contribution of each charge.
Given that the computed electric field components at the center are:
[tex]\[ E_{\text{center x}} = 28606.004832901774 \, \text{N/C} \][/tex]
[tex]\[ E_{\text{center y}} = -15892.22490716765 \, \text{N/C} \][/tex]
So, the electric field [tex]\( \mathbf{E}_{\text{center}} \)[/tex] is:
[tex]\[ \mathbf{E}_{\text{center}} = (28606.004832901774, -15892.22490716765) \, \text{N/C} \][/tex]
### (iv) Electric field at the fourth corner [tex]\( S \)[/tex] of the square
Similarly, we calculate the electric field components at corner [tex]\( S \)[/tex] from each charge and sum them.
Given that the computed electric field components at corner [tex]\( S \)[/tex] are:
[tex]\[ E_{\text{S x}} = 10579.222490716766 \, \text{N/C} \][/tex]
[tex]\[ E_{\text{S y}} = -5153.277509283234 \, \text{N/C} \][/tex]
So, the electric field [tex]\( \mathbf{E}_{\text{S}} \)[/tex] is:
[tex]\[ \mathbf{E}_{\text{S}} = (10579.222490716766, -5153.277509283234) \, \text{N/C} \][/tex]
In summary:
1. The potential at the center of the square is [tex]\( V_{\text{center}} = -19070.669888601184 \, \text{V} \)[/tex]
2. The potential at the fourth corner [tex]\( S \)[/tex] is [tex]\( V_{\text{S}} = -10851.88996286706 \, \text{V} \)[/tex]
3. The electric field at the center of the square is [tex]\( \mathbf{E}_{\text{center}} = (28606.004832901774, -15892.22490716765) \, \text{N/C} \)[/tex]
4. The electric field at the fourth corner [tex]\( S \)[/tex] is [tex]\( \mathbf{E}_{\text{S}} = (10579.222490716766, -5153.277509283234) \, \text{N/C} \)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.