At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the values of [tex]\( x \)[/tex] that satisfy both inequalities [tex]\( 9 + 2x > 0 \)[/tex] and [tex]\( 7 - 3x > 0 \)[/tex], we will solve each inequality step-by-step and then find the common values that satisfy both.
### Solving the First Inequality:
[tex]\[ 9 + 2x > 0 \][/tex]
1. Isolate [tex]\( x \)[/tex]:
[tex]\[ 2x > -9 \][/tex]
2. Divide both sides by 2:
[tex]\[ x > -\frac{9}{2} \][/tex]
So, the solution for the first inequality is:
[tex]\[ x > -4.5 \][/tex]
### Solving the Second Inequality:
[tex]\[ 7 - 3x > 0 \][/tex]
1. Isolate [tex]\( x \)[/tex]:
[tex]\[ -3x > -7 \][/tex]
2. Divide both sides by -3 and reverse the inequality sign (since we are dividing by a negative number):
[tex]\[ x < \frac{7}{3} \][/tex]
So, the solution for the second inequality is:
[tex]\[ x < \frac{7}{3} \][/tex]
### Finding the Intersection:
To find the common values that satisfy both inequalities, we need to determine the values of [tex]\( x \)[/tex] that lie within both ranges:
[tex]\[ x > -4.5 \][/tex]
[tex]\[ x < \frac{7}{3} \][/tex]
The intersection is the set of values of [tex]\( x \)[/tex] that satisfy both conditions simultaneously. These values are in the range:
[tex]\[ -4.5 < x < \frac{7}{3} \][/tex]
### Conclusion:
The values of [tex]\( x \)[/tex] that satisfy both inequalities [tex]\( 9 + 2x > 0 \)[/tex] and [tex]\( 7 - 3x > 0 \)[/tex] are:
[tex]\[ -4.5 < x < \frac{7}{3} \][/tex]
This is the solution set for the given inequalities.
### Solving the First Inequality:
[tex]\[ 9 + 2x > 0 \][/tex]
1. Isolate [tex]\( x \)[/tex]:
[tex]\[ 2x > -9 \][/tex]
2. Divide both sides by 2:
[tex]\[ x > -\frac{9}{2} \][/tex]
So, the solution for the first inequality is:
[tex]\[ x > -4.5 \][/tex]
### Solving the Second Inequality:
[tex]\[ 7 - 3x > 0 \][/tex]
1. Isolate [tex]\( x \)[/tex]:
[tex]\[ -3x > -7 \][/tex]
2. Divide both sides by -3 and reverse the inequality sign (since we are dividing by a negative number):
[tex]\[ x < \frac{7}{3} \][/tex]
So, the solution for the second inequality is:
[tex]\[ x < \frac{7}{3} \][/tex]
### Finding the Intersection:
To find the common values that satisfy both inequalities, we need to determine the values of [tex]\( x \)[/tex] that lie within both ranges:
[tex]\[ x > -4.5 \][/tex]
[tex]\[ x < \frac{7}{3} \][/tex]
The intersection is the set of values of [tex]\( x \)[/tex] that satisfy both conditions simultaneously. These values are in the range:
[tex]\[ -4.5 < x < \frac{7}{3} \][/tex]
### Conclusion:
The values of [tex]\( x \)[/tex] that satisfy both inequalities [tex]\( 9 + 2x > 0 \)[/tex] and [tex]\( 7 - 3x > 0 \)[/tex] are:
[tex]\[ -4.5 < x < \frac{7}{3} \][/tex]
This is the solution set for the given inequalities.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.