Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the total internal energy of a canister filled with 1.3 mol of single-atom helium gas at a temperature of 315 K, we can use the formula for the kinetic energy due to translation in an ideal monoatomic gas.
The formula to calculate the internal energy [tex]\( U \)[/tex] is given by:
[tex]\[ U = \frac{3}{2} n R T \][/tex]
where:
- [tex]\( n \)[/tex] is the number of moles of the gas,
- [tex]\( R \)[/tex] is the universal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Let's break it down:
1. Given:
- [tex]\( n = 1.3 \)[/tex] moles
- [tex]\( R = 8.31 \)[/tex] J/(mol·K)
- [tex]\( T = 315 \)[/tex] K
2. Substituting the given values into the formula:
[tex]\[ U = \frac{3}{2} \cdot 1.3 \cdot 8.31 \cdot 315 \][/tex]
3. Simplifying step-by-step:
- First, calculate [tex]\( \frac{3}{2} \)[/tex]:
[tex]\[ \frac{3}{2} = 1.5 \][/tex]
- Next, multiply the number of moles by the gas constant:
[tex]\[ 1.3 \cdot 8.31 = 10.803 \][/tex]
- Then, multiply this result by the temperature:
[tex]\[ 10.803 \cdot 315 = 3402.945 \][/tex]
- Finally, multiply by 1.5:
[tex]\[ 1.5 \cdot 3402.945 = 5104.4175 \][/tex]
So, the approximate total internal energy of the gas is:
[tex]\[ U \approx 5104.4175 \][/tex] J
Given the provided options, the correct answer is closest to:
A. 5100 J
The formula to calculate the internal energy [tex]\( U \)[/tex] is given by:
[tex]\[ U = \frac{3}{2} n R T \][/tex]
where:
- [tex]\( n \)[/tex] is the number of moles of the gas,
- [tex]\( R \)[/tex] is the universal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin.
Let's break it down:
1. Given:
- [tex]\( n = 1.3 \)[/tex] moles
- [tex]\( R = 8.31 \)[/tex] J/(mol·K)
- [tex]\( T = 315 \)[/tex] K
2. Substituting the given values into the formula:
[tex]\[ U = \frac{3}{2} \cdot 1.3 \cdot 8.31 \cdot 315 \][/tex]
3. Simplifying step-by-step:
- First, calculate [tex]\( \frac{3}{2} \)[/tex]:
[tex]\[ \frac{3}{2} = 1.5 \][/tex]
- Next, multiply the number of moles by the gas constant:
[tex]\[ 1.3 \cdot 8.31 = 10.803 \][/tex]
- Then, multiply this result by the temperature:
[tex]\[ 10.803 \cdot 315 = 3402.945 \][/tex]
- Finally, multiply by 1.5:
[tex]\[ 1.5 \cdot 3402.945 = 5104.4175 \][/tex]
So, the approximate total internal energy of the gas is:
[tex]\[ U \approx 5104.4175 \][/tex] J
Given the provided options, the correct answer is closest to:
A. 5100 J
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.