Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve this problem, let's proceed step-by-step using the given data and the relevant equations.
1. Given Data:
- Number of moles [tex]\( n = 2 \)[/tex] mol
- Temperature [tex]\( T = 323 \)[/tex] K
- Mass of the gas [tex]\( m = 0.032 \)[/tex] kg
- Universal gas constant [tex]\( R = 8.31 \)[/tex] J/(mol·K)
2. Transitional Kinetic Energy:
The translational kinetic energy of the gas molecules can be calculated using the formula:
[tex]\[ KE_{\text{translational}} = \frac{3}{2} n R T \][/tex]
Substituting the given values:
[tex]\[ KE_{\text{translational}} = \frac{3}{2} \times 2 \times 8.31 \times 323 \][/tex]
Working this out gives:
[tex]\[ KE_{\text{translational}} \approx 8052.39 \text{ J} \][/tex]
3. Relating Kinetic Energy to Speed:
The average speed [tex]\( v \)[/tex] of the molecules can be found from the kinetic energy expression:
[tex]\[ KE_{\text{translational}} = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex]:
[tex]\[ v = \sqrt{\frac{2 \times KE_{\text{translational}}}{m}} \][/tex]
Substituting the known values:
[tex]\[ v = \sqrt{\frac{2 \times 8052.39}{0.032}} \][/tex]
[tex]\[ v \approx \sqrt{503274.375} \][/tex]
[tex]\[ v \approx 709.42 \text{ m/s} \][/tex]
4. Determine the Correct Option:
Comparing the calculated average speed [tex]\( v \approx 709.42 \text{ m/s} \)[/tex] to the provided options:
- A. [tex]\( 681 \text{ m/s} \)[/tex]
- B. [tex]\( 709 \text{ m/s} \)[/tex]
- C. [tex]\( 652 \text{ m/s} \)[/tex]
- D. [tex]\( 621 \text{ m/s} \)[/tex]
The closest option to the calculated speed is option B.
Therefore, the approximate average speed of the molecules in the gas is [tex]\( \boxed{709 \text{ m/s}} \)[/tex].
1. Given Data:
- Number of moles [tex]\( n = 2 \)[/tex] mol
- Temperature [tex]\( T = 323 \)[/tex] K
- Mass of the gas [tex]\( m = 0.032 \)[/tex] kg
- Universal gas constant [tex]\( R = 8.31 \)[/tex] J/(mol·K)
2. Transitional Kinetic Energy:
The translational kinetic energy of the gas molecules can be calculated using the formula:
[tex]\[ KE_{\text{translational}} = \frac{3}{2} n R T \][/tex]
Substituting the given values:
[tex]\[ KE_{\text{translational}} = \frac{3}{2} \times 2 \times 8.31 \times 323 \][/tex]
Working this out gives:
[tex]\[ KE_{\text{translational}} \approx 8052.39 \text{ J} \][/tex]
3. Relating Kinetic Energy to Speed:
The average speed [tex]\( v \)[/tex] of the molecules can be found from the kinetic energy expression:
[tex]\[ KE_{\text{translational}} = \frac{1}{2} m v^2 \][/tex]
Solving for [tex]\( v \)[/tex]:
[tex]\[ v = \sqrt{\frac{2 \times KE_{\text{translational}}}{m}} \][/tex]
Substituting the known values:
[tex]\[ v = \sqrt{\frac{2 \times 8052.39}{0.032}} \][/tex]
[tex]\[ v \approx \sqrt{503274.375} \][/tex]
[tex]\[ v \approx 709.42 \text{ m/s} \][/tex]
4. Determine the Correct Option:
Comparing the calculated average speed [tex]\( v \approx 709.42 \text{ m/s} \)[/tex] to the provided options:
- A. [tex]\( 681 \text{ m/s} \)[/tex]
- B. [tex]\( 709 \text{ m/s} \)[/tex]
- C. [tex]\( 652 \text{ m/s} \)[/tex]
- D. [tex]\( 621 \text{ m/s} \)[/tex]
The closest option to the calculated speed is option B.
Therefore, the approximate average speed of the molecules in the gas is [tex]\( \boxed{709 \text{ m/s}} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.