Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's begin by rewriting the given equation:
[tex]\[ y = \frac{a^2 b}{2} \][/tex]
We need to solve for [tex]\( a \)[/tex] in terms of [tex]\( y \)[/tex] and [tex]\( b \)[/tex]. Let's go through this step-by-step:
1. Multiply both sides of the equation by 2 to eliminate the denominator:
[tex]\[ 2y = a^2 b \][/tex]
2. Divide both sides by [tex]\( b \)[/tex] to isolate [tex]\( a^2 \)[/tex]:
[tex]\[ \frac{2y}{b} = a^2 \][/tex]
3. Take the square root of both sides to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \pm \sqrt{\frac{2y}{b}} \][/tex]
Therefore, the solutions for [tex]\( a \)[/tex] are:
[tex]\[ a = \sqrt{\frac{2y}{b}} \quad \text{and} \quad a = -\sqrt{\frac{2y}{b}} \][/tex]
These are the two possible values for [tex]\( a \)[/tex] given the original equation [tex]\( y = \frac{a^2 b}{2} \)[/tex].
[tex]\[ y = \frac{a^2 b}{2} \][/tex]
We need to solve for [tex]\( a \)[/tex] in terms of [tex]\( y \)[/tex] and [tex]\( b \)[/tex]. Let's go through this step-by-step:
1. Multiply both sides of the equation by 2 to eliminate the denominator:
[tex]\[ 2y = a^2 b \][/tex]
2. Divide both sides by [tex]\( b \)[/tex] to isolate [tex]\( a^2 \)[/tex]:
[tex]\[ \frac{2y}{b} = a^2 \][/tex]
3. Take the square root of both sides to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \pm \sqrt{\frac{2y}{b}} \][/tex]
Therefore, the solutions for [tex]\( a \)[/tex] are:
[tex]\[ a = \sqrt{\frac{2y}{b}} \quad \text{and} \quad a = -\sqrt{\frac{2y}{b}} \][/tex]
These are the two possible values for [tex]\( a \)[/tex] given the original equation [tex]\( y = \frac{a^2 b}{2} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.