Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem, we need to follow the provided steps and explanations:
### (1) Determining [tex]\( z_3 \)[/tex] in the form of [tex]\( a + bi \)[/tex]
Given:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
We are required to find:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} \][/tex]
To find [tex]\(\frac{1}{z_1}\)[/tex] and [tex]\(\frac{1}{z_2}\)[/tex], we use the property of complex conjugates. For a complex number [tex]\( z = a + bi \)[/tex], the reciprocal is given by:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{a - bi}{a^2 + b^2} \][/tex]
So, for [tex]\( z_1 = 2 + i \)[/tex]:
[tex]\[ \frac{1}{z_1} = \frac{2 - i}{2^2 + 1^2} = \frac{2 - i}{5} = \frac{2}{5} - \frac{1}{5}i \][/tex]
For [tex]\( z_2 = -2 + 4i \)[/tex]:
[tex]\[ \frac{1}{z_2} = \frac{-2 - 4i}{(-2)^2 + (4i)^2} = \frac{-2 - 4i}{4 + 16} = \frac{-2 - 4i}{20} = -\frac{1}{10} - \frac{2}{5}i \][/tex]
Now, summing these results to find [tex]\( z_3 \)[/tex]:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} = \left( \frac{2}{5} - \frac{1}{5}i \right) + \left( -\frac{1}{10} - \frac{2}{5}i \right) \][/tex]
Combining real and imaginary parts:
[tex]\[ \text{Real part} = \frac{2}{5} - \frac{1}{10} = \frac{4}{10} - \frac{1}{10} = \frac{3}{10} = 0.3 \][/tex]
[tex]\[ \text{Imaginary part} = -\frac{1}{5} - \frac{2}{5} = -\frac{1}{5} \left( 1 + 2 \right) = -\frac{3}{5} = -0.6 \][/tex]
So:
[tex]\[ z_3 = 0.3 - 0.6i \][/tex]
### (ii) Representing [tex]\( z_1z_2 \)[/tex] and [tex]\( z_3 \)[/tex] in the Argand diagram
- Calculating [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
To find [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1z_2 = (2 + i)(-2 + 4i) \][/tex]
Using the distributive property:
[tex]\[ z_1z_2 = 2(-2 + 4i) + i(-2 + 4i) \][/tex]
[tex]\[ z_1z_2 = -4 + 8i - 2i + 4i^2 \][/tex]
[tex]\[ z_1z_2 = -4 + 6i + 4(-1) \][/tex]
[tex]\[ z_1z_2 = -4 + 6i - 4 \][/tex]
[tex]\[ z_1z_2 = -8 + 6i \][/tex]
So, [tex]\( z_1z_2 = -8 + 6i \)[/tex].
To represent these complex numbers on the Argand diagram, we plot the following points:
- [tex]\( z_1z_2 = -8 + 6i \)[/tex] is represented by the point (-8, 6).
- [tex]\( z_3 = 0.3 - 0.6i \)[/tex] is represented by the point (0.3, -0.6).
These would be plotted as corresponding points in the complex plane with their real parts on the x-axis and their imaginary parts on the y-axis.
### (1) Determining [tex]\( z_3 \)[/tex] in the form of [tex]\( a + bi \)[/tex]
Given:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
We are required to find:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} \][/tex]
To find [tex]\(\frac{1}{z_1}\)[/tex] and [tex]\(\frac{1}{z_2}\)[/tex], we use the property of complex conjugates. For a complex number [tex]\( z = a + bi \)[/tex], the reciprocal is given by:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{a - bi}{a^2 + b^2} \][/tex]
So, for [tex]\( z_1 = 2 + i \)[/tex]:
[tex]\[ \frac{1}{z_1} = \frac{2 - i}{2^2 + 1^2} = \frac{2 - i}{5} = \frac{2}{5} - \frac{1}{5}i \][/tex]
For [tex]\( z_2 = -2 + 4i \)[/tex]:
[tex]\[ \frac{1}{z_2} = \frac{-2 - 4i}{(-2)^2 + (4i)^2} = \frac{-2 - 4i}{4 + 16} = \frac{-2 - 4i}{20} = -\frac{1}{10} - \frac{2}{5}i \][/tex]
Now, summing these results to find [tex]\( z_3 \)[/tex]:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} = \left( \frac{2}{5} - \frac{1}{5}i \right) + \left( -\frac{1}{10} - \frac{2}{5}i \right) \][/tex]
Combining real and imaginary parts:
[tex]\[ \text{Real part} = \frac{2}{5} - \frac{1}{10} = \frac{4}{10} - \frac{1}{10} = \frac{3}{10} = 0.3 \][/tex]
[tex]\[ \text{Imaginary part} = -\frac{1}{5} - \frac{2}{5} = -\frac{1}{5} \left( 1 + 2 \right) = -\frac{3}{5} = -0.6 \][/tex]
So:
[tex]\[ z_3 = 0.3 - 0.6i \][/tex]
### (ii) Representing [tex]\( z_1z_2 \)[/tex] and [tex]\( z_3 \)[/tex] in the Argand diagram
- Calculating [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
To find [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1z_2 = (2 + i)(-2 + 4i) \][/tex]
Using the distributive property:
[tex]\[ z_1z_2 = 2(-2 + 4i) + i(-2 + 4i) \][/tex]
[tex]\[ z_1z_2 = -4 + 8i - 2i + 4i^2 \][/tex]
[tex]\[ z_1z_2 = -4 + 6i + 4(-1) \][/tex]
[tex]\[ z_1z_2 = -4 + 6i - 4 \][/tex]
[tex]\[ z_1z_2 = -8 + 6i \][/tex]
So, [tex]\( z_1z_2 = -8 + 6i \)[/tex].
To represent these complex numbers on the Argand diagram, we plot the following points:
- [tex]\( z_1z_2 = -8 + 6i \)[/tex] is represented by the point (-8, 6).
- [tex]\( z_3 = 0.3 - 0.6i \)[/tex] is represented by the point (0.3, -0.6).
These would be plotted as corresponding points in the complex plane with their real parts on the x-axis and their imaginary parts on the y-axis.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.