Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, we need to follow the provided steps and explanations:
### (1) Determining [tex]\( z_3 \)[/tex] in the form of [tex]\( a + bi \)[/tex]
Given:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
We are required to find:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} \][/tex]
To find [tex]\(\frac{1}{z_1}\)[/tex] and [tex]\(\frac{1}{z_2}\)[/tex], we use the property of complex conjugates. For a complex number [tex]\( z = a + bi \)[/tex], the reciprocal is given by:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{a - bi}{a^2 + b^2} \][/tex]
So, for [tex]\( z_1 = 2 + i \)[/tex]:
[tex]\[ \frac{1}{z_1} = \frac{2 - i}{2^2 + 1^2} = \frac{2 - i}{5} = \frac{2}{5} - \frac{1}{5}i \][/tex]
For [tex]\( z_2 = -2 + 4i \)[/tex]:
[tex]\[ \frac{1}{z_2} = \frac{-2 - 4i}{(-2)^2 + (4i)^2} = \frac{-2 - 4i}{4 + 16} = \frac{-2 - 4i}{20} = -\frac{1}{10} - \frac{2}{5}i \][/tex]
Now, summing these results to find [tex]\( z_3 \)[/tex]:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} = \left( \frac{2}{5} - \frac{1}{5}i \right) + \left( -\frac{1}{10} - \frac{2}{5}i \right) \][/tex]
Combining real and imaginary parts:
[tex]\[ \text{Real part} = \frac{2}{5} - \frac{1}{10} = \frac{4}{10} - \frac{1}{10} = \frac{3}{10} = 0.3 \][/tex]
[tex]\[ \text{Imaginary part} = -\frac{1}{5} - \frac{2}{5} = -\frac{1}{5} \left( 1 + 2 \right) = -\frac{3}{5} = -0.6 \][/tex]
So:
[tex]\[ z_3 = 0.3 - 0.6i \][/tex]
### (ii) Representing [tex]\( z_1z_2 \)[/tex] and [tex]\( z_3 \)[/tex] in the Argand diagram
- Calculating [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
To find [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1z_2 = (2 + i)(-2 + 4i) \][/tex]
Using the distributive property:
[tex]\[ z_1z_2 = 2(-2 + 4i) + i(-2 + 4i) \][/tex]
[tex]\[ z_1z_2 = -4 + 8i - 2i + 4i^2 \][/tex]
[tex]\[ z_1z_2 = -4 + 6i + 4(-1) \][/tex]
[tex]\[ z_1z_2 = -4 + 6i - 4 \][/tex]
[tex]\[ z_1z_2 = -8 + 6i \][/tex]
So, [tex]\( z_1z_2 = -8 + 6i \)[/tex].
To represent these complex numbers on the Argand diagram, we plot the following points:
- [tex]\( z_1z_2 = -8 + 6i \)[/tex] is represented by the point (-8, 6).
- [tex]\( z_3 = 0.3 - 0.6i \)[/tex] is represented by the point (0.3, -0.6).
These would be plotted as corresponding points in the complex plane with their real parts on the x-axis and their imaginary parts on the y-axis.
### (1) Determining [tex]\( z_3 \)[/tex] in the form of [tex]\( a + bi \)[/tex]
Given:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
We are required to find:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} \][/tex]
To find [tex]\(\frac{1}{z_1}\)[/tex] and [tex]\(\frac{1}{z_2}\)[/tex], we use the property of complex conjugates. For a complex number [tex]\( z = a + bi \)[/tex], the reciprocal is given by:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{a - bi}{a^2 + b^2} \][/tex]
So, for [tex]\( z_1 = 2 + i \)[/tex]:
[tex]\[ \frac{1}{z_1} = \frac{2 - i}{2^2 + 1^2} = \frac{2 - i}{5} = \frac{2}{5} - \frac{1}{5}i \][/tex]
For [tex]\( z_2 = -2 + 4i \)[/tex]:
[tex]\[ \frac{1}{z_2} = \frac{-2 - 4i}{(-2)^2 + (4i)^2} = \frac{-2 - 4i}{4 + 16} = \frac{-2 - 4i}{20} = -\frac{1}{10} - \frac{2}{5}i \][/tex]
Now, summing these results to find [tex]\( z_3 \)[/tex]:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} = \left( \frac{2}{5} - \frac{1}{5}i \right) + \left( -\frac{1}{10} - \frac{2}{5}i \right) \][/tex]
Combining real and imaginary parts:
[tex]\[ \text{Real part} = \frac{2}{5} - \frac{1}{10} = \frac{4}{10} - \frac{1}{10} = \frac{3}{10} = 0.3 \][/tex]
[tex]\[ \text{Imaginary part} = -\frac{1}{5} - \frac{2}{5} = -\frac{1}{5} \left( 1 + 2 \right) = -\frac{3}{5} = -0.6 \][/tex]
So:
[tex]\[ z_3 = 0.3 - 0.6i \][/tex]
### (ii) Representing [tex]\( z_1z_2 \)[/tex] and [tex]\( z_3 \)[/tex] in the Argand diagram
- Calculating [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
To find [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1z_2 = (2 + i)(-2 + 4i) \][/tex]
Using the distributive property:
[tex]\[ z_1z_2 = 2(-2 + 4i) + i(-2 + 4i) \][/tex]
[tex]\[ z_1z_2 = -4 + 8i - 2i + 4i^2 \][/tex]
[tex]\[ z_1z_2 = -4 + 6i + 4(-1) \][/tex]
[tex]\[ z_1z_2 = -4 + 6i - 4 \][/tex]
[tex]\[ z_1z_2 = -8 + 6i \][/tex]
So, [tex]\( z_1z_2 = -8 + 6i \)[/tex].
To represent these complex numbers on the Argand diagram, we plot the following points:
- [tex]\( z_1z_2 = -8 + 6i \)[/tex] is represented by the point (-8, 6).
- [tex]\( z_3 = 0.3 - 0.6i \)[/tex] is represented by the point (0.3, -0.6).
These would be plotted as corresponding points in the complex plane with their real parts on the x-axis and their imaginary parts on the y-axis.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.