Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve this problem, we need to follow the provided steps and explanations:
### (1) Determining [tex]\( z_3 \)[/tex] in the form of [tex]\( a + bi \)[/tex]
Given:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
We are required to find:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} \][/tex]
To find [tex]\(\frac{1}{z_1}\)[/tex] and [tex]\(\frac{1}{z_2}\)[/tex], we use the property of complex conjugates. For a complex number [tex]\( z = a + bi \)[/tex], the reciprocal is given by:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{a - bi}{a^2 + b^2} \][/tex]
So, for [tex]\( z_1 = 2 + i \)[/tex]:
[tex]\[ \frac{1}{z_1} = \frac{2 - i}{2^2 + 1^2} = \frac{2 - i}{5} = \frac{2}{5} - \frac{1}{5}i \][/tex]
For [tex]\( z_2 = -2 + 4i \)[/tex]:
[tex]\[ \frac{1}{z_2} = \frac{-2 - 4i}{(-2)^2 + (4i)^2} = \frac{-2 - 4i}{4 + 16} = \frac{-2 - 4i}{20} = -\frac{1}{10} - \frac{2}{5}i \][/tex]
Now, summing these results to find [tex]\( z_3 \)[/tex]:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} = \left( \frac{2}{5} - \frac{1}{5}i \right) + \left( -\frac{1}{10} - \frac{2}{5}i \right) \][/tex]
Combining real and imaginary parts:
[tex]\[ \text{Real part} = \frac{2}{5} - \frac{1}{10} = \frac{4}{10} - \frac{1}{10} = \frac{3}{10} = 0.3 \][/tex]
[tex]\[ \text{Imaginary part} = -\frac{1}{5} - \frac{2}{5} = -\frac{1}{5} \left( 1 + 2 \right) = -\frac{3}{5} = -0.6 \][/tex]
So:
[tex]\[ z_3 = 0.3 - 0.6i \][/tex]
### (ii) Representing [tex]\( z_1z_2 \)[/tex] and [tex]\( z_3 \)[/tex] in the Argand diagram
- Calculating [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
To find [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1z_2 = (2 + i)(-2 + 4i) \][/tex]
Using the distributive property:
[tex]\[ z_1z_2 = 2(-2 + 4i) + i(-2 + 4i) \][/tex]
[tex]\[ z_1z_2 = -4 + 8i - 2i + 4i^2 \][/tex]
[tex]\[ z_1z_2 = -4 + 6i + 4(-1) \][/tex]
[tex]\[ z_1z_2 = -4 + 6i - 4 \][/tex]
[tex]\[ z_1z_2 = -8 + 6i \][/tex]
So, [tex]\( z_1z_2 = -8 + 6i \)[/tex].
To represent these complex numbers on the Argand diagram, we plot the following points:
- [tex]\( z_1z_2 = -8 + 6i \)[/tex] is represented by the point (-8, 6).
- [tex]\( z_3 = 0.3 - 0.6i \)[/tex] is represented by the point (0.3, -0.6).
These would be plotted as corresponding points in the complex plane with their real parts on the x-axis and their imaginary parts on the y-axis.
### (1) Determining [tex]\( z_3 \)[/tex] in the form of [tex]\( a + bi \)[/tex]
Given:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
We are required to find:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} \][/tex]
To find [tex]\(\frac{1}{z_1}\)[/tex] and [tex]\(\frac{1}{z_2}\)[/tex], we use the property of complex conjugates. For a complex number [tex]\( z = a + bi \)[/tex], the reciprocal is given by:
[tex]\[ \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{a - bi}{a^2 + b^2} \][/tex]
So, for [tex]\( z_1 = 2 + i \)[/tex]:
[tex]\[ \frac{1}{z_1} = \frac{2 - i}{2^2 + 1^2} = \frac{2 - i}{5} = \frac{2}{5} - \frac{1}{5}i \][/tex]
For [tex]\( z_2 = -2 + 4i \)[/tex]:
[tex]\[ \frac{1}{z_2} = \frac{-2 - 4i}{(-2)^2 + (4i)^2} = \frac{-2 - 4i}{4 + 16} = \frac{-2 - 4i}{20} = -\frac{1}{10} - \frac{2}{5}i \][/tex]
Now, summing these results to find [tex]\( z_3 \)[/tex]:
[tex]\[ z_3 = \frac{1}{z_1} + \frac{1}{z_2} = \left( \frac{2}{5} - \frac{1}{5}i \right) + \left( -\frac{1}{10} - \frac{2}{5}i \right) \][/tex]
Combining real and imaginary parts:
[tex]\[ \text{Real part} = \frac{2}{5} - \frac{1}{10} = \frac{4}{10} - \frac{1}{10} = \frac{3}{10} = 0.3 \][/tex]
[tex]\[ \text{Imaginary part} = -\frac{1}{5} - \frac{2}{5} = -\frac{1}{5} \left( 1 + 2 \right) = -\frac{3}{5} = -0.6 \][/tex]
So:
[tex]\[ z_3 = 0.3 - 0.6i \][/tex]
### (ii) Representing [tex]\( z_1z_2 \)[/tex] and [tex]\( z_3 \)[/tex] in the Argand diagram
- Calculating [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1 = 2 + i \][/tex]
[tex]\[ z_2 = -2 + 4i \][/tex]
To find [tex]\( z_1z_2 \)[/tex]:
[tex]\[ z_1z_2 = (2 + i)(-2 + 4i) \][/tex]
Using the distributive property:
[tex]\[ z_1z_2 = 2(-2 + 4i) + i(-2 + 4i) \][/tex]
[tex]\[ z_1z_2 = -4 + 8i - 2i + 4i^2 \][/tex]
[tex]\[ z_1z_2 = -4 + 6i + 4(-1) \][/tex]
[tex]\[ z_1z_2 = -4 + 6i - 4 \][/tex]
[tex]\[ z_1z_2 = -8 + 6i \][/tex]
So, [tex]\( z_1z_2 = -8 + 6i \)[/tex].
To represent these complex numbers on the Argand diagram, we plot the following points:
- [tex]\( z_1z_2 = -8 + 6i \)[/tex] is represented by the point (-8, 6).
- [tex]\( z_3 = 0.3 - 0.6i \)[/tex] is represented by the point (0.3, -0.6).
These would be plotted as corresponding points in the complex plane with their real parts on the x-axis and their imaginary parts on the y-axis.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.