Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Absolutely, let's go through the solution step-by-step to determine the distance covered by the Sor.
1. Determine the average speed:
- The average speed given is [tex]\( 56 \frac{3}{5} \)[/tex] units.
- First, convert the mixed number to an improper fraction or a decimal.
[tex]\[ 56 \frac{3}{5} = 56 + \frac{3}{5} \][/tex]
- Converting the fraction:
[tex]\[ \frac{3}{5} = 0.6 \][/tex]
- Adding the decimal to the whole number:
[tex]\[ 56 + 0.6 = 56.6 \][/tex]
Thus, the average speed is [tex]\( 56.6 \)[/tex] units per hour.
2. Determine the time:
- The time given is [tex]\( 1 \frac{1}{2} \)[/tex] hours.
- First, convert the mixed number to an improper fraction or a decimal.
[tex]\[ 1 \frac{1}{2} = 1 + \frac{1}{2} \][/tex]
- Converting the fraction:
[tex]\[ \frac{1}{2} = 0.5 \][/tex]
- Adding the decimal to the whole number:
[tex]\[ 1 + 0.5 = 1.5 \][/tex]
Thus, the time is [tex]\( 1.5 \)[/tex] hours.
3. Calculate the distance covered:
- The formula for distance is:
[tex]\[ \text{Distance} = \text{Average Speed} \times \text{Time} \][/tex]
- Substitute the known values into the formula:
[tex]\[ \text{Distance} = 56.6 \times 1.5 \][/tex]
4. Calculate the product:
Evaluating the above expression gives:
[tex]\[ 56.6 \times 1.5 = 84.9 \][/tex]
So, the distance covered by the Sor in [tex]\(1 \frac{1}{2}\)[/tex] hours, while moving at an average speed of [tex]\( 56 \frac{3}{5} \)[/tex], is [tex]\(84.9\)[/tex] units.
1. Determine the average speed:
- The average speed given is [tex]\( 56 \frac{3}{5} \)[/tex] units.
- First, convert the mixed number to an improper fraction or a decimal.
[tex]\[ 56 \frac{3}{5} = 56 + \frac{3}{5} \][/tex]
- Converting the fraction:
[tex]\[ \frac{3}{5} = 0.6 \][/tex]
- Adding the decimal to the whole number:
[tex]\[ 56 + 0.6 = 56.6 \][/tex]
Thus, the average speed is [tex]\( 56.6 \)[/tex] units per hour.
2. Determine the time:
- The time given is [tex]\( 1 \frac{1}{2} \)[/tex] hours.
- First, convert the mixed number to an improper fraction or a decimal.
[tex]\[ 1 \frac{1}{2} = 1 + \frac{1}{2} \][/tex]
- Converting the fraction:
[tex]\[ \frac{1}{2} = 0.5 \][/tex]
- Adding the decimal to the whole number:
[tex]\[ 1 + 0.5 = 1.5 \][/tex]
Thus, the time is [tex]\( 1.5 \)[/tex] hours.
3. Calculate the distance covered:
- The formula for distance is:
[tex]\[ \text{Distance} = \text{Average Speed} \times \text{Time} \][/tex]
- Substitute the known values into the formula:
[tex]\[ \text{Distance} = 56.6 \times 1.5 \][/tex]
4. Calculate the product:
Evaluating the above expression gives:
[tex]\[ 56.6 \times 1.5 = 84.9 \][/tex]
So, the distance covered by the Sor in [tex]\(1 \frac{1}{2}\)[/tex] hours, while moving at an average speed of [tex]\( 56 \frac{3}{5} \)[/tex], is [tex]\(84.9\)[/tex] units.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.