Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To evaluate the limit [tex]\(\lim_{x \rightarrow 9} \frac{x - 9}{\sqrt{x} - 3}\)[/tex], follow these steps:
1. Direct Substitution: First, we try to substitute [tex]\(x = 9\)[/tex] directly into the expression.
[tex]\[ \frac{9 - 9}{\sqrt{9} - 3} = \frac{0}{0} \][/tex]
This results in an indeterminate form ([tex]\(\frac{0}{0}\)[/tex]), indicating that we need to simplify or manipulate the expression further to find the limit.
2. Simplifying the Expression:
To simplify, let's try to factor and reduce the expression. Rewrite the numerator [tex]\(x - 9\)[/tex] in a form that can potentially cancel the denominator [tex]\(\sqrt{x} - 3\)[/tex].
Notice that [tex]\(x = (\sqrt{x})^2\)[/tex], so:
[tex]\[ x - 9 = (\sqrt{x})^2 - 9 = (\sqrt{x} - 3)(\sqrt{x} + 3) \][/tex]
This is the difference of squares. Now, substitute this back into the original limit expression:
[tex]\[ \frac{x - 9}{\sqrt{x} - 3} = \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{\sqrt{x} - 3} \][/tex]
3. Canceling the Common Factor:
We can now cancel out the [tex]\(\sqrt{x} - 3\)[/tex] term in the numerator and denominator:
[tex]\[ \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{\sqrt{x} - 3} = \sqrt{x} + 3 \quad \text{for} \quad x \neq 9 \][/tex]
4. Evaluate the Limit:
Now that we have simplified the expression, we can directly substitute [tex]\(x = 9\)[/tex] into [tex]\(\sqrt{x} + 3\)[/tex]:
[tex]\[ \lim_{x \rightarrow 9} (\sqrt{x} + 3) = \sqrt{9} + 3 = 3 + 3 = 6 \][/tex]
Hence, the limit is:
[tex]\[ \lim_{x \rightarrow 9} \frac{x - 9}{\sqrt{x} - 3} = 6 \][/tex]
1. Direct Substitution: First, we try to substitute [tex]\(x = 9\)[/tex] directly into the expression.
[tex]\[ \frac{9 - 9}{\sqrt{9} - 3} = \frac{0}{0} \][/tex]
This results in an indeterminate form ([tex]\(\frac{0}{0}\)[/tex]), indicating that we need to simplify or manipulate the expression further to find the limit.
2. Simplifying the Expression:
To simplify, let's try to factor and reduce the expression. Rewrite the numerator [tex]\(x - 9\)[/tex] in a form that can potentially cancel the denominator [tex]\(\sqrt{x} - 3\)[/tex].
Notice that [tex]\(x = (\sqrt{x})^2\)[/tex], so:
[tex]\[ x - 9 = (\sqrt{x})^2 - 9 = (\sqrt{x} - 3)(\sqrt{x} + 3) \][/tex]
This is the difference of squares. Now, substitute this back into the original limit expression:
[tex]\[ \frac{x - 9}{\sqrt{x} - 3} = \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{\sqrt{x} - 3} \][/tex]
3. Canceling the Common Factor:
We can now cancel out the [tex]\(\sqrt{x} - 3\)[/tex] term in the numerator and denominator:
[tex]\[ \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{\sqrt{x} - 3} = \sqrt{x} + 3 \quad \text{for} \quad x \neq 9 \][/tex]
4. Evaluate the Limit:
Now that we have simplified the expression, we can directly substitute [tex]\(x = 9\)[/tex] into [tex]\(\sqrt{x} + 3\)[/tex]:
[tex]\[ \lim_{x \rightarrow 9} (\sqrt{x} + 3) = \sqrt{9} + 3 = 3 + 3 = 6 \][/tex]
Hence, the limit is:
[tex]\[ \lim_{x \rightarrow 9} \frac{x - 9}{\sqrt{x} - 3} = 6 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.