Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To evaluate the limit [tex]\(\lim_{x \rightarrow 9} \frac{x - 9}{\sqrt{x} - 3}\)[/tex], follow these steps:
1. Direct Substitution: First, we try to substitute [tex]\(x = 9\)[/tex] directly into the expression.
[tex]\[ \frac{9 - 9}{\sqrt{9} - 3} = \frac{0}{0} \][/tex]
This results in an indeterminate form ([tex]\(\frac{0}{0}\)[/tex]), indicating that we need to simplify or manipulate the expression further to find the limit.
2. Simplifying the Expression:
To simplify, let's try to factor and reduce the expression. Rewrite the numerator [tex]\(x - 9\)[/tex] in a form that can potentially cancel the denominator [tex]\(\sqrt{x} - 3\)[/tex].
Notice that [tex]\(x = (\sqrt{x})^2\)[/tex], so:
[tex]\[ x - 9 = (\sqrt{x})^2 - 9 = (\sqrt{x} - 3)(\sqrt{x} + 3) \][/tex]
This is the difference of squares. Now, substitute this back into the original limit expression:
[tex]\[ \frac{x - 9}{\sqrt{x} - 3} = \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{\sqrt{x} - 3} \][/tex]
3. Canceling the Common Factor:
We can now cancel out the [tex]\(\sqrt{x} - 3\)[/tex] term in the numerator and denominator:
[tex]\[ \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{\sqrt{x} - 3} = \sqrt{x} + 3 \quad \text{for} \quad x \neq 9 \][/tex]
4. Evaluate the Limit:
Now that we have simplified the expression, we can directly substitute [tex]\(x = 9\)[/tex] into [tex]\(\sqrt{x} + 3\)[/tex]:
[tex]\[ \lim_{x \rightarrow 9} (\sqrt{x} + 3) = \sqrt{9} + 3 = 3 + 3 = 6 \][/tex]
Hence, the limit is:
[tex]\[ \lim_{x \rightarrow 9} \frac{x - 9}{\sqrt{x} - 3} = 6 \][/tex]
1. Direct Substitution: First, we try to substitute [tex]\(x = 9\)[/tex] directly into the expression.
[tex]\[ \frac{9 - 9}{\sqrt{9} - 3} = \frac{0}{0} \][/tex]
This results in an indeterminate form ([tex]\(\frac{0}{0}\)[/tex]), indicating that we need to simplify or manipulate the expression further to find the limit.
2. Simplifying the Expression:
To simplify, let's try to factor and reduce the expression. Rewrite the numerator [tex]\(x - 9\)[/tex] in a form that can potentially cancel the denominator [tex]\(\sqrt{x} - 3\)[/tex].
Notice that [tex]\(x = (\sqrt{x})^2\)[/tex], so:
[tex]\[ x - 9 = (\sqrt{x})^2 - 9 = (\sqrt{x} - 3)(\sqrt{x} + 3) \][/tex]
This is the difference of squares. Now, substitute this back into the original limit expression:
[tex]\[ \frac{x - 9}{\sqrt{x} - 3} = \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{\sqrt{x} - 3} \][/tex]
3. Canceling the Common Factor:
We can now cancel out the [tex]\(\sqrt{x} - 3\)[/tex] term in the numerator and denominator:
[tex]\[ \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{\sqrt{x} - 3} = \sqrt{x} + 3 \quad \text{for} \quad x \neq 9 \][/tex]
4. Evaluate the Limit:
Now that we have simplified the expression, we can directly substitute [tex]\(x = 9\)[/tex] into [tex]\(\sqrt{x} + 3\)[/tex]:
[tex]\[ \lim_{x \rightarrow 9} (\sqrt{x} + 3) = \sqrt{9} + 3 = 3 + 3 = 6 \][/tex]
Hence, the limit is:
[tex]\[ \lim_{x \rightarrow 9} \frac{x - 9}{\sqrt{x} - 3} = 6 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.