At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine how much ice cream can be put into a cone with a height of 12 cm and a base radius of 3.5 cm, we need to calculate the volume of the cone. The volume [tex]\( V \)[/tex] of a cone can be found using the formula:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume of the cone
- [tex]\( r \)[/tex] is the radius of the base
- [tex]\( h \)[/tex] is the height of the cone
- [tex]\( \pi \)[/tex] is the constant Pi (approximately 3.14159)
Given:
- Height, [tex]\( h \)[/tex] = 12 cm
- Radius, [tex]\( r \)[/tex] = 3.5 cm
Now, we substitute the given values into the formula:
1. Calculate the square of the radius:
[tex]\[ r^2 = 3.5^2 = 12.25 \][/tex]
2. Multiply this by the height of the cone:
[tex]\[ 12.25 \times 12 = 147 \][/tex]
3. Multiply by [tex]\(\pi\)[/tex] (approximately 3.14159):
[tex]\[ \pi \times 147 \approx 3.14159 \times 147 = 461.81283 \][/tex]
4. Finally, multiply by [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{1}{3} \times 461.81283 \approx 153.93804002589985 \][/tex]
Therefore, the volume of the cone, which represents how much ice cream can be put into it, is approximately:
[tex]\[ 153.94 \, \text{cm}^3 \][/tex]
So, about 153.94 cubic centimeters of ice cream can be put into the cone.
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
where:
- [tex]\( V \)[/tex] is the volume of the cone
- [tex]\( r \)[/tex] is the radius of the base
- [tex]\( h \)[/tex] is the height of the cone
- [tex]\( \pi \)[/tex] is the constant Pi (approximately 3.14159)
Given:
- Height, [tex]\( h \)[/tex] = 12 cm
- Radius, [tex]\( r \)[/tex] = 3.5 cm
Now, we substitute the given values into the formula:
1. Calculate the square of the radius:
[tex]\[ r^2 = 3.5^2 = 12.25 \][/tex]
2. Multiply this by the height of the cone:
[tex]\[ 12.25 \times 12 = 147 \][/tex]
3. Multiply by [tex]\(\pi\)[/tex] (approximately 3.14159):
[tex]\[ \pi \times 147 \approx 3.14159 \times 147 = 461.81283 \][/tex]
4. Finally, multiply by [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \frac{1}{3} \times 461.81283 \approx 153.93804002589985 \][/tex]
Therefore, the volume of the cone, which represents how much ice cream can be put into it, is approximately:
[tex]\[ 153.94 \, \text{cm}^3 \][/tex]
So, about 153.94 cubic centimeters of ice cream can be put into the cone.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.