Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\( 16x^2 + 9 = 0 \)[/tex], let's go through the steps one by one.
1. Set up the equation:
[tex]\[ 16x^2 + 9 = 0 \][/tex]
2. Isolate the [tex]\( x^2 \)[/tex] term:
[tex]\[ 16x^2 + 9 = 0 \][/tex]
Subtract 9 from both sides to get:
[tex]\[ 16x^2 = -9 \][/tex]
3. Solve for [tex]\( x^2 \)[/tex]:
Divide both sides by 16:
[tex]\[ x^2 = \frac{-9}{16} \][/tex]
4. Introduce the imaginary unit [tex]\( i \)[/tex]:
Since we have a negative number on the right side of the equation, this implies the solution will involve the imaginary unit [tex]\( i \)[/tex]. Recall that [tex]\( \sqrt{-1} = i \)[/tex].
5. Take the square root of both sides:
[tex]\[ x = \pm \sqrt{\frac{-9}{16}} \][/tex]
[tex]\[ x = \pm \frac{\sqrt{-9}}{\sqrt{16}} \][/tex]
6. Simplify the square root expression:
[tex]\[ \sqrt{-9} = \sqrt{-1 \cdot 9} = \sqrt{-1} \cdot \sqrt{9} = i \cdot 3 = 3i \][/tex]
[tex]\[ \sqrt{16} = 4 \][/tex]
Hence,
[tex]\[ x = \pm \frac{3i}{4} \][/tex]
Thus, the solutions to the equation [tex]\( 16x^2 + 9 = 0 \)[/tex] are:
[tex]\[ x = \pm \frac{3i}{4} \][/tex]
In numeric form, these roots are [tex]\( 0.75i \)[/tex] and [tex]\( -0.75i \)[/tex].
So, the answers are:
[tex]\[ x = \frac{3i}{4} \][/tex]
and
[tex]\[ x = -\frac{3i}{4} \][/tex]
1. Set up the equation:
[tex]\[ 16x^2 + 9 = 0 \][/tex]
2. Isolate the [tex]\( x^2 \)[/tex] term:
[tex]\[ 16x^2 + 9 = 0 \][/tex]
Subtract 9 from both sides to get:
[tex]\[ 16x^2 = -9 \][/tex]
3. Solve for [tex]\( x^2 \)[/tex]:
Divide both sides by 16:
[tex]\[ x^2 = \frac{-9}{16} \][/tex]
4. Introduce the imaginary unit [tex]\( i \)[/tex]:
Since we have a negative number on the right side of the equation, this implies the solution will involve the imaginary unit [tex]\( i \)[/tex]. Recall that [tex]\( \sqrt{-1} = i \)[/tex].
5. Take the square root of both sides:
[tex]\[ x = \pm \sqrt{\frac{-9}{16}} \][/tex]
[tex]\[ x = \pm \frac{\sqrt{-9}}{\sqrt{16}} \][/tex]
6. Simplify the square root expression:
[tex]\[ \sqrt{-9} = \sqrt{-1 \cdot 9} = \sqrt{-1} \cdot \sqrt{9} = i \cdot 3 = 3i \][/tex]
[tex]\[ \sqrt{16} = 4 \][/tex]
Hence,
[tex]\[ x = \pm \frac{3i}{4} \][/tex]
Thus, the solutions to the equation [tex]\( 16x^2 + 9 = 0 \)[/tex] are:
[tex]\[ x = \pm \frac{3i}{4} \][/tex]
In numeric form, these roots are [tex]\( 0.75i \)[/tex] and [tex]\( -0.75i \)[/tex].
So, the answers are:
[tex]\[ x = \frac{3i}{4} \][/tex]
and
[tex]\[ x = -\frac{3i}{4} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.