Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's balance the chemical equation for the reaction between iron and atmospheric oxygen to form iron oxide (ferric oxide).
The unbalanced chemical equation is:
[tex]\[ \text{Fe} + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 \][/tex]
1. Counting atoms on both sides:
- On the left, we have:
- Fe: 1 atom
- O: 2 atoms (since it is in the form of O[tex]\(_2\)[/tex])
- On the right, we have:
- Fe: 2 atoms (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex])
- O: 3 atoms (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex])
2. Balancing iron (Fe) atoms:
- We need 2 Fe atoms on the left to match the 2 Fe atoms on the right.
- Updating the equation:
[tex]\[ 2 \text{Fe} + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 \][/tex]
3. Balancing oxygen (O) atoms:
- Currently, there are 2 O atoms on the left (from O[tex]\(_2\)[/tex]) and 3 O atoms on the right.
- To balance the O atoms, we can adjust the coefficients. We need to have a common multiple of 3 (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex]) and 2 (from O[tex]\(_2\)[/tex]).
- The smallest common multiple of 2 and 3 is 6.
- For the left side:
- We need 3 O[tex]\(_2\)[/tex] molecules to get 6 oxygen atoms:
[tex]\[ 3 \text{O}_2 \][/tex]
- For the right side:
- We need 2 Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex] molecules to get 6 oxygen atoms:
[tex]\[ 2 \text{Fe}_2\text{O}_3 \][/tex]
4. Balancing the iron atoms again:
- With 2 Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex] molecules on the right, we have 4 Fe atoms.
- Thus, we need 4 Fe atoms on the left side:
[tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
Now the equation is balanced:
[tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
From the given options, the correct balanced chemical equation for this reaction is:
A. [tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
The unbalanced chemical equation is:
[tex]\[ \text{Fe} + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 \][/tex]
1. Counting atoms on both sides:
- On the left, we have:
- Fe: 1 atom
- O: 2 atoms (since it is in the form of O[tex]\(_2\)[/tex])
- On the right, we have:
- Fe: 2 atoms (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex])
- O: 3 atoms (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex])
2. Balancing iron (Fe) atoms:
- We need 2 Fe atoms on the left to match the 2 Fe atoms on the right.
- Updating the equation:
[tex]\[ 2 \text{Fe} + \text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 \][/tex]
3. Balancing oxygen (O) atoms:
- Currently, there are 2 O atoms on the left (from O[tex]\(_2\)[/tex]) and 3 O atoms on the right.
- To balance the O atoms, we can adjust the coefficients. We need to have a common multiple of 3 (from Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex]) and 2 (from O[tex]\(_2\)[/tex]).
- The smallest common multiple of 2 and 3 is 6.
- For the left side:
- We need 3 O[tex]\(_2\)[/tex] molecules to get 6 oxygen atoms:
[tex]\[ 3 \text{O}_2 \][/tex]
- For the right side:
- We need 2 Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex] molecules to get 6 oxygen atoms:
[tex]\[ 2 \text{Fe}_2\text{O}_3 \][/tex]
4. Balancing the iron atoms again:
- With 2 Fe[tex]\(_2\)[/tex]O[tex]\(_3\)[/tex] molecules on the right, we have 4 Fe atoms.
- Thus, we need 4 Fe atoms on the left side:
[tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
Now the equation is balanced:
[tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
From the given options, the correct balanced chemical equation for this reaction is:
A. [tex]\[ 4 \text{Fe} + 3 \text{O}_2 \rightarrow 2 \text{Fe}_2\text{O}_3 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.