Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the temperature at which 192 g of SO[tex]\(_2\)[/tex] would occupy a volume of 6 dm[tex]\(^3\)[/tex] at a pressure of 15 atm using the Van der Waals equation, follow these steps:
### Step 1: Understand the Given Data
1. Van der Waals constants for SO[tex]\(_2\)[/tex]:
- [tex]\(a = 6.865\)[/tex] atm·L[tex]\(^2\)[/tex]/mol[tex]\(^2\)[/tex]
- [tex]\(b = 0.05679\)[/tex] L/mol
2. Given values:
- Pressure, [tex]\(P = 15\)[/tex] atm
- Volume, [tex]\(V = 6\)[/tex] dm[tex]\(^3\)[/tex]
- Mass of SO[tex]\(_2\)[/tex], [tex]\( \text{mass}_{\text{SO}_2} = 192\)[/tex] g
3. Molar mass of SO[tex]\(_2\)[/tex]:
- [tex]\( M_{\text{SO}_2} = 64.066 \)[/tex] g/mol
### Step 2: Conversion of Volume
- Volume needs to be in Liters for the calculation:
- [tex]\( V = 6 \)[/tex] dm[tex]\(^3\)[/tex] = 6 L
### Step 3: Calculate the Number of Moles of SO[tex]\(_2\)[/tex]
- Use the molar mass of SO[tex]\(_2\)[/tex] to find the number of moles, [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\text{mass}_{\text{SO}_2}}{M_{\text{SO}_2}} = \frac{192 \text{ g}}{64.066 \text{ g/mol}} \approx 2.9969 \text{ moles} \][/tex]
### Step 4: Use the Van der Waals Equation
The Van der Waals equation for a real gas is:
[tex]\[ \left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right) = n R T \][/tex]
Where [tex]\( R \)[/tex] is the universal gas constant, [tex]\( R = 0.0821 \)[/tex] L·atm/K·mol.
### Step 5: Solve for Temperature [tex]\( T \)[/tex]
Rearrange the Van der Waals equation to solve for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{\left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right)}{n R} \][/tex]
Plug in the known values:
[tex]\[ T = \frac{\left(15 + 6.865 \left( \frac{2.9969}{6} \right)^2 \right) \left(6 - 2.9969 \times 0.05679 \right)}{2.9969 \times 0.0821} \][/tex]
### Step 6: Calculation
Perform the calculations step-by-step:
1. Calculate [tex]\(\left( \frac{n}{V} \right)^2 \)[/tex]:
[tex]\[ \left( \frac{2.9969}{6} \right)^2 \approx 0.2497 \][/tex]
2. Calculate the pressure factor:
[tex]\[ 15 + 6.865 \times 0.2497 \approx 16.7137 \][/tex]
3. Calculate the volume factor:
[tex]\[ 6 - 2.9969 \times 0.05679 \approx 5.8298 \][/tex]
4. Combine these into the formula for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{16.7137 \times 5.8298}{2.9969 \times 0.0821} \approx \frac{97.4504}{0.2461} \approx 395.99 \][/tex]
### Step 7: Final Result
The temperature at which 192 g of SO[tex]\(_2\)[/tex] would occupy a volume of 6 dm[tex]\(^3\)[/tex] at 15 atm pressure is approximately 396 Kelvin.
### Step 1: Understand the Given Data
1. Van der Waals constants for SO[tex]\(_2\)[/tex]:
- [tex]\(a = 6.865\)[/tex] atm·L[tex]\(^2\)[/tex]/mol[tex]\(^2\)[/tex]
- [tex]\(b = 0.05679\)[/tex] L/mol
2. Given values:
- Pressure, [tex]\(P = 15\)[/tex] atm
- Volume, [tex]\(V = 6\)[/tex] dm[tex]\(^3\)[/tex]
- Mass of SO[tex]\(_2\)[/tex], [tex]\( \text{mass}_{\text{SO}_2} = 192\)[/tex] g
3. Molar mass of SO[tex]\(_2\)[/tex]:
- [tex]\( M_{\text{SO}_2} = 64.066 \)[/tex] g/mol
### Step 2: Conversion of Volume
- Volume needs to be in Liters for the calculation:
- [tex]\( V = 6 \)[/tex] dm[tex]\(^3\)[/tex] = 6 L
### Step 3: Calculate the Number of Moles of SO[tex]\(_2\)[/tex]
- Use the molar mass of SO[tex]\(_2\)[/tex] to find the number of moles, [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\text{mass}_{\text{SO}_2}}{M_{\text{SO}_2}} = \frac{192 \text{ g}}{64.066 \text{ g/mol}} \approx 2.9969 \text{ moles} \][/tex]
### Step 4: Use the Van der Waals Equation
The Van der Waals equation for a real gas is:
[tex]\[ \left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right) = n R T \][/tex]
Where [tex]\( R \)[/tex] is the universal gas constant, [tex]\( R = 0.0821 \)[/tex] L·atm/K·mol.
### Step 5: Solve for Temperature [tex]\( T \)[/tex]
Rearrange the Van der Waals equation to solve for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{\left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right)}{n R} \][/tex]
Plug in the known values:
[tex]\[ T = \frac{\left(15 + 6.865 \left( \frac{2.9969}{6} \right)^2 \right) \left(6 - 2.9969 \times 0.05679 \right)}{2.9969 \times 0.0821} \][/tex]
### Step 6: Calculation
Perform the calculations step-by-step:
1. Calculate [tex]\(\left( \frac{n}{V} \right)^2 \)[/tex]:
[tex]\[ \left( \frac{2.9969}{6} \right)^2 \approx 0.2497 \][/tex]
2. Calculate the pressure factor:
[tex]\[ 15 + 6.865 \times 0.2497 \approx 16.7137 \][/tex]
3. Calculate the volume factor:
[tex]\[ 6 - 2.9969 \times 0.05679 \approx 5.8298 \][/tex]
4. Combine these into the formula for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{16.7137 \times 5.8298}{2.9969 \times 0.0821} \approx \frac{97.4504}{0.2461} \approx 395.99 \][/tex]
### Step 7: Final Result
The temperature at which 192 g of SO[tex]\(_2\)[/tex] would occupy a volume of 6 dm[tex]\(^3\)[/tex] at 15 atm pressure is approximately 396 Kelvin.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.