Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the temperature at which 192 g of SO[tex]\(_2\)[/tex] would occupy a volume of 6 dm[tex]\(^3\)[/tex] at a pressure of 15 atm using the Van der Waals equation, follow these steps:
### Step 1: Understand the Given Data
1. Van der Waals constants for SO[tex]\(_2\)[/tex]:
- [tex]\(a = 6.865\)[/tex] atm·L[tex]\(^2\)[/tex]/mol[tex]\(^2\)[/tex]
- [tex]\(b = 0.05679\)[/tex] L/mol
2. Given values:
- Pressure, [tex]\(P = 15\)[/tex] atm
- Volume, [tex]\(V = 6\)[/tex] dm[tex]\(^3\)[/tex]
- Mass of SO[tex]\(_2\)[/tex], [tex]\( \text{mass}_{\text{SO}_2} = 192\)[/tex] g
3. Molar mass of SO[tex]\(_2\)[/tex]:
- [tex]\( M_{\text{SO}_2} = 64.066 \)[/tex] g/mol
### Step 2: Conversion of Volume
- Volume needs to be in Liters for the calculation:
- [tex]\( V = 6 \)[/tex] dm[tex]\(^3\)[/tex] = 6 L
### Step 3: Calculate the Number of Moles of SO[tex]\(_2\)[/tex]
- Use the molar mass of SO[tex]\(_2\)[/tex] to find the number of moles, [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\text{mass}_{\text{SO}_2}}{M_{\text{SO}_2}} = \frac{192 \text{ g}}{64.066 \text{ g/mol}} \approx 2.9969 \text{ moles} \][/tex]
### Step 4: Use the Van der Waals Equation
The Van der Waals equation for a real gas is:
[tex]\[ \left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right) = n R T \][/tex]
Where [tex]\( R \)[/tex] is the universal gas constant, [tex]\( R = 0.0821 \)[/tex] L·atm/K·mol.
### Step 5: Solve for Temperature [tex]\( T \)[/tex]
Rearrange the Van der Waals equation to solve for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{\left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right)}{n R} \][/tex]
Plug in the known values:
[tex]\[ T = \frac{\left(15 + 6.865 \left( \frac{2.9969}{6} \right)^2 \right) \left(6 - 2.9969 \times 0.05679 \right)}{2.9969 \times 0.0821} \][/tex]
### Step 6: Calculation
Perform the calculations step-by-step:
1. Calculate [tex]\(\left( \frac{n}{V} \right)^2 \)[/tex]:
[tex]\[ \left( \frac{2.9969}{6} \right)^2 \approx 0.2497 \][/tex]
2. Calculate the pressure factor:
[tex]\[ 15 + 6.865 \times 0.2497 \approx 16.7137 \][/tex]
3. Calculate the volume factor:
[tex]\[ 6 - 2.9969 \times 0.05679 \approx 5.8298 \][/tex]
4. Combine these into the formula for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{16.7137 \times 5.8298}{2.9969 \times 0.0821} \approx \frac{97.4504}{0.2461} \approx 395.99 \][/tex]
### Step 7: Final Result
The temperature at which 192 g of SO[tex]\(_2\)[/tex] would occupy a volume of 6 dm[tex]\(^3\)[/tex] at 15 atm pressure is approximately 396 Kelvin.
### Step 1: Understand the Given Data
1. Van der Waals constants for SO[tex]\(_2\)[/tex]:
- [tex]\(a = 6.865\)[/tex] atm·L[tex]\(^2\)[/tex]/mol[tex]\(^2\)[/tex]
- [tex]\(b = 0.05679\)[/tex] L/mol
2. Given values:
- Pressure, [tex]\(P = 15\)[/tex] atm
- Volume, [tex]\(V = 6\)[/tex] dm[tex]\(^3\)[/tex]
- Mass of SO[tex]\(_2\)[/tex], [tex]\( \text{mass}_{\text{SO}_2} = 192\)[/tex] g
3. Molar mass of SO[tex]\(_2\)[/tex]:
- [tex]\( M_{\text{SO}_2} = 64.066 \)[/tex] g/mol
### Step 2: Conversion of Volume
- Volume needs to be in Liters for the calculation:
- [tex]\( V = 6 \)[/tex] dm[tex]\(^3\)[/tex] = 6 L
### Step 3: Calculate the Number of Moles of SO[tex]\(_2\)[/tex]
- Use the molar mass of SO[tex]\(_2\)[/tex] to find the number of moles, [tex]\( n \)[/tex]:
[tex]\[ n = \frac{\text{mass}_{\text{SO}_2}}{M_{\text{SO}_2}} = \frac{192 \text{ g}}{64.066 \text{ g/mol}} \approx 2.9969 \text{ moles} \][/tex]
### Step 4: Use the Van der Waals Equation
The Van der Waals equation for a real gas is:
[tex]\[ \left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right) = n R T \][/tex]
Where [tex]\( R \)[/tex] is the universal gas constant, [tex]\( R = 0.0821 \)[/tex] L·atm/K·mol.
### Step 5: Solve for Temperature [tex]\( T \)[/tex]
Rearrange the Van der Waals equation to solve for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{\left(P + a \left( \frac{n}{V} \right)^2 \right) \left( V - n b \right)}{n R} \][/tex]
Plug in the known values:
[tex]\[ T = \frac{\left(15 + 6.865 \left( \frac{2.9969}{6} \right)^2 \right) \left(6 - 2.9969 \times 0.05679 \right)}{2.9969 \times 0.0821} \][/tex]
### Step 6: Calculation
Perform the calculations step-by-step:
1. Calculate [tex]\(\left( \frac{n}{V} \right)^2 \)[/tex]:
[tex]\[ \left( \frac{2.9969}{6} \right)^2 \approx 0.2497 \][/tex]
2. Calculate the pressure factor:
[tex]\[ 15 + 6.865 \times 0.2497 \approx 16.7137 \][/tex]
3. Calculate the volume factor:
[tex]\[ 6 - 2.9969 \times 0.05679 \approx 5.8298 \][/tex]
4. Combine these into the formula for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{16.7137 \times 5.8298}{2.9969 \times 0.0821} \approx \frac{97.4504}{0.2461} \approx 395.99 \][/tex]
### Step 7: Final Result
The temperature at which 192 g of SO[tex]\(_2\)[/tex] would occupy a volume of 6 dm[tex]\(^3\)[/tex] at 15 atm pressure is approximately 396 Kelvin.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.