Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To graph the equation [tex]\( y + 6 = \frac{4}{5}(x + 3) \)[/tex], we will transform it into the slope-intercept form [tex]\( y = mx + b \)[/tex] and identify its slope and y-intercept.
1. Start with the given equation:
[tex]\[ y + 6 = \frac{4}{5}(x + 3) \][/tex]
2. Distribute the fraction on the right-hand side:
[tex]\[ y + 6 = \frac{4}{5}x + \frac{4}{5} \times 3 \][/tex]
[tex]\[ y + 6 = \frac{4}{5}x + \frac{12}{5} \][/tex]
3. Isolate [tex]\( y \)[/tex] by subtracting 6 from both sides:
[tex]\[ y = \frac{4}{5}x + \frac{12}{5} - 6 \][/tex]
4. Convert 6 into a fraction with a denominator of 5 to combine the fractions:
[tex]\[ 6 = \frac{30}{5} \][/tex]
[tex]\[ y = \frac{4}{5}x + \frac{12}{5} - \frac{30}{5} \][/tex]
5. Combine the terms:
[tex]\[ y = \frac{4}{5}x - \frac{18}{5} \][/tex]
So, the slope-intercept form of the equation is:
[tex]\[ y = \frac{4}{5}x - \frac{18}{5} \][/tex]
Here:
- The slope [tex]\( m \)[/tex] is [tex]\( \frac{4}{5} \)[/tex] or 0.8
- The y-intercept [tex]\( b \)[/tex] is [tex]\( -\frac{18}{5} \)[/tex] or -3.6
Next, we need two points to graph the line:
- The y-intercept itself is a point: [tex]\((0, -3.6)\)[/tex]
Let's choose another point by selecting [tex]\( x = 5 \)[/tex]:
\- Substitute [tex]\( x = 5 \)[/tex] into the equation:
[tex]\[ y = \frac{4}{5}(5) - \frac{18}{5} \][/tex]
[tex]\[ y = 4 - \frac{18}{5} \][/tex]
[tex]\[ y = 4 - 3.6 \][/tex]
[tex]\[ y = 0.4 \][/tex]
So, the coordinates of the second point are [tex]\((5, 0.4)\)[/tex].
In conclusion:
- The slope is 0.8.
- The y-intercept is -3.6.
- Two points on the line are [tex]\((0, -3.6)\)[/tex] and [tex]\((5, 0.4)\)[/tex].
You can now use these points to graph the line. Select the line tool and plot the points:
1. Start at [tex]\((0, -3.6)\)[/tex]
2. Move to [tex]\((5, 0.4)\)[/tex]
Draw the line through these points to graph the equation.
1. Start with the given equation:
[tex]\[ y + 6 = \frac{4}{5}(x + 3) \][/tex]
2. Distribute the fraction on the right-hand side:
[tex]\[ y + 6 = \frac{4}{5}x + \frac{4}{5} \times 3 \][/tex]
[tex]\[ y + 6 = \frac{4}{5}x + \frac{12}{5} \][/tex]
3. Isolate [tex]\( y \)[/tex] by subtracting 6 from both sides:
[tex]\[ y = \frac{4}{5}x + \frac{12}{5} - 6 \][/tex]
4. Convert 6 into a fraction with a denominator of 5 to combine the fractions:
[tex]\[ 6 = \frac{30}{5} \][/tex]
[tex]\[ y = \frac{4}{5}x + \frac{12}{5} - \frac{30}{5} \][/tex]
5. Combine the terms:
[tex]\[ y = \frac{4}{5}x - \frac{18}{5} \][/tex]
So, the slope-intercept form of the equation is:
[tex]\[ y = \frac{4}{5}x - \frac{18}{5} \][/tex]
Here:
- The slope [tex]\( m \)[/tex] is [tex]\( \frac{4}{5} \)[/tex] or 0.8
- The y-intercept [tex]\( b \)[/tex] is [tex]\( -\frac{18}{5} \)[/tex] or -3.6
Next, we need two points to graph the line:
- The y-intercept itself is a point: [tex]\((0, -3.6)\)[/tex]
Let's choose another point by selecting [tex]\( x = 5 \)[/tex]:
\- Substitute [tex]\( x = 5 \)[/tex] into the equation:
[tex]\[ y = \frac{4}{5}(5) - \frac{18}{5} \][/tex]
[tex]\[ y = 4 - \frac{18}{5} \][/tex]
[tex]\[ y = 4 - 3.6 \][/tex]
[tex]\[ y = 0.4 \][/tex]
So, the coordinates of the second point are [tex]\((5, 0.4)\)[/tex].
In conclusion:
- The slope is 0.8.
- The y-intercept is -3.6.
- Two points on the line are [tex]\((0, -3.6)\)[/tex] and [tex]\((5, 0.4)\)[/tex].
You can now use these points to graph the line. Select the line tool and plot the points:
1. Start at [tex]\((0, -3.6)\)[/tex]
2. Move to [tex]\((5, 0.4)\)[/tex]
Draw the line through these points to graph the equation.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.