Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the equation of a line in the point-slope form, we will use the given slope and the coordinates of the given point. The point-slope form of a line is defined as:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( m \)[/tex] is the slope of the line, and [tex]\((x_1, y_1)\)[/tex] are the coordinates of a point on the line.
Given:
- Slope [tex]\(\frac{2}{5}\)[/tex]
- Point [tex]\((-4, -7)\)[/tex]
We substitute these values into the point-slope form equation.
1. Identify [tex]\( m \)[/tex], [tex]\( x_1 \)[/tex], and [tex]\( y_1 \)[/tex]:
[tex]\[ m = \frac{2}{5}, \quad x_1 = -4, \quad y_1 = -7 \][/tex]
2. Substitute these values into the point-slope form equation:
[tex]\[ y - (-7) = \frac{2}{5} (x - (-4)) \][/tex]
3. Simplify the equation:
Since [tex]\( y - (-7) \)[/tex] becomes [tex]\( y + 7 \)[/tex] and [tex]\( x - (-4) \)[/tex] becomes [tex]\( x + 4 \)[/tex], we get:
[tex]\[ y + 7 = \frac{2}{5} (x + 4) \][/tex]
Thus, the point-slope form of the line with the given slope [tex]\(\frac{2}{5}\)[/tex] and passing through the point [tex]\((-4, -7)\)[/tex] is:
[tex]\[ y + 7 = \frac{2}{5}(x + 4) \][/tex]
Now we compare it with the given options:
1. [tex]\( y + 7 = \frac{2}{5}(x + 4) \)[/tex]
2. [tex]\( y - 4 = \frac{2}{5}(x - 7) \)[/tex]
3. [tex]\( y + 4 = \frac{2}{5}(x + 7) \)[/tex]
4. [tex]\( y - 7 = \frac{2}{5}(x - 4) \)[/tex]
The correct option is:
[tex]\[ y + 7 = \frac{2}{5}(x + 4) \][/tex]
Therefore, the correct answer is the first option.
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( m \)[/tex] is the slope of the line, and [tex]\((x_1, y_1)\)[/tex] are the coordinates of a point on the line.
Given:
- Slope [tex]\(\frac{2}{5}\)[/tex]
- Point [tex]\((-4, -7)\)[/tex]
We substitute these values into the point-slope form equation.
1. Identify [tex]\( m \)[/tex], [tex]\( x_1 \)[/tex], and [tex]\( y_1 \)[/tex]:
[tex]\[ m = \frac{2}{5}, \quad x_1 = -4, \quad y_1 = -7 \][/tex]
2. Substitute these values into the point-slope form equation:
[tex]\[ y - (-7) = \frac{2}{5} (x - (-4)) \][/tex]
3. Simplify the equation:
Since [tex]\( y - (-7) \)[/tex] becomes [tex]\( y + 7 \)[/tex] and [tex]\( x - (-4) \)[/tex] becomes [tex]\( x + 4 \)[/tex], we get:
[tex]\[ y + 7 = \frac{2}{5} (x + 4) \][/tex]
Thus, the point-slope form of the line with the given slope [tex]\(\frac{2}{5}\)[/tex] and passing through the point [tex]\((-4, -7)\)[/tex] is:
[tex]\[ y + 7 = \frac{2}{5}(x + 4) \][/tex]
Now we compare it with the given options:
1. [tex]\( y + 7 = \frac{2}{5}(x + 4) \)[/tex]
2. [tex]\( y - 4 = \frac{2}{5}(x - 7) \)[/tex]
3. [tex]\( y + 4 = \frac{2}{5}(x + 7) \)[/tex]
4. [tex]\( y - 7 = \frac{2}{5}(x - 4) \)[/tex]
The correct option is:
[tex]\[ y + 7 = \frac{2}{5}(x + 4) \][/tex]
Therefore, the correct answer is the first option.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.