Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the equation of a line in the point-slope form, we will use the given slope and the coordinates of the given point. The point-slope form of a line is defined as:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( m \)[/tex] is the slope of the line, and [tex]\((x_1, y_1)\)[/tex] are the coordinates of a point on the line.
Given:
- Slope [tex]\(\frac{2}{5}\)[/tex]
- Point [tex]\((-4, -7)\)[/tex]
We substitute these values into the point-slope form equation.
1. Identify [tex]\( m \)[/tex], [tex]\( x_1 \)[/tex], and [tex]\( y_1 \)[/tex]:
[tex]\[ m = \frac{2}{5}, \quad x_1 = -4, \quad y_1 = -7 \][/tex]
2. Substitute these values into the point-slope form equation:
[tex]\[ y - (-7) = \frac{2}{5} (x - (-4)) \][/tex]
3. Simplify the equation:
Since [tex]\( y - (-7) \)[/tex] becomes [tex]\( y + 7 \)[/tex] and [tex]\( x - (-4) \)[/tex] becomes [tex]\( x + 4 \)[/tex], we get:
[tex]\[ y + 7 = \frac{2}{5} (x + 4) \][/tex]
Thus, the point-slope form of the line with the given slope [tex]\(\frac{2}{5}\)[/tex] and passing through the point [tex]\((-4, -7)\)[/tex] is:
[tex]\[ y + 7 = \frac{2}{5}(x + 4) \][/tex]
Now we compare it with the given options:
1. [tex]\( y + 7 = \frac{2}{5}(x + 4) \)[/tex]
2. [tex]\( y - 4 = \frac{2}{5}(x - 7) \)[/tex]
3. [tex]\( y + 4 = \frac{2}{5}(x + 7) \)[/tex]
4. [tex]\( y - 7 = \frac{2}{5}(x - 4) \)[/tex]
The correct option is:
[tex]\[ y + 7 = \frac{2}{5}(x + 4) \][/tex]
Therefore, the correct answer is the first option.
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\( m \)[/tex] is the slope of the line, and [tex]\((x_1, y_1)\)[/tex] are the coordinates of a point on the line.
Given:
- Slope [tex]\(\frac{2}{5}\)[/tex]
- Point [tex]\((-4, -7)\)[/tex]
We substitute these values into the point-slope form equation.
1. Identify [tex]\( m \)[/tex], [tex]\( x_1 \)[/tex], and [tex]\( y_1 \)[/tex]:
[tex]\[ m = \frac{2}{5}, \quad x_1 = -4, \quad y_1 = -7 \][/tex]
2. Substitute these values into the point-slope form equation:
[tex]\[ y - (-7) = \frac{2}{5} (x - (-4)) \][/tex]
3. Simplify the equation:
Since [tex]\( y - (-7) \)[/tex] becomes [tex]\( y + 7 \)[/tex] and [tex]\( x - (-4) \)[/tex] becomes [tex]\( x + 4 \)[/tex], we get:
[tex]\[ y + 7 = \frac{2}{5} (x + 4) \][/tex]
Thus, the point-slope form of the line with the given slope [tex]\(\frac{2}{5}\)[/tex] and passing through the point [tex]\((-4, -7)\)[/tex] is:
[tex]\[ y + 7 = \frac{2}{5}(x + 4) \][/tex]
Now we compare it with the given options:
1. [tex]\( y + 7 = \frac{2}{5}(x + 4) \)[/tex]
2. [tex]\( y - 4 = \frac{2}{5}(x - 7) \)[/tex]
3. [tex]\( y + 4 = \frac{2}{5}(x + 7) \)[/tex]
4. [tex]\( y - 7 = \frac{2}{5}(x - 4) \)[/tex]
The correct option is:
[tex]\[ y + 7 = \frac{2}{5}(x + 4) \][/tex]
Therefore, the correct answer is the first option.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.