Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the value of [tex]\( a \)[/tex] that makes the matrix
[tex]\[ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \][/tex]
an identity matrix, we first need to understand what an identity matrix is.
An identity matrix is a special type of matrix in which all the elements on the main diagonal are 1, and all other elements are 0. In the context of a 2x2 identity matrix, it is represented as
[tex]\[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
Comparing this with the given matrix
[tex]\[ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \][/tex]
we observe that for this matrix to be equivalent to the identity matrix, the entries on the main diagonal must both be equal to 1. Therefore, we need both instances of [tex]\( a \)[/tex] in the matrix to be 1.
This means:
[tex]\[ a = 1 \][/tex]
So, the value of [tex]\( a \)[/tex] that makes the given matrix an identity matrix is [tex]\( \boxed{1} \)[/tex].
[tex]\[ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \][/tex]
an identity matrix, we first need to understand what an identity matrix is.
An identity matrix is a special type of matrix in which all the elements on the main diagonal are 1, and all other elements are 0. In the context of a 2x2 identity matrix, it is represented as
[tex]\[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
Comparing this with the given matrix
[tex]\[ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \][/tex]
we observe that for this matrix to be equivalent to the identity matrix, the entries on the main diagonal must both be equal to 1. Therefore, we need both instances of [tex]\( a \)[/tex] in the matrix to be 1.
This means:
[tex]\[ a = 1 \][/tex]
So, the value of [tex]\( a \)[/tex] that makes the given matrix an identity matrix is [tex]\( \boxed{1} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.