Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the adjugate and inverse of the matrix [tex]\( A = \left[\begin{array}{cc}2 & 3 \\ 4 & -5\end{array}\right] \)[/tex], we can follow the steps below:
### Step 1: Calculate the Determinant of Matrix [tex]\( A \)[/tex]
The determinant of a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( A = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \)[/tex] is given by:
[tex]\[ \det(A) = ad - bc \][/tex]
For our matrix [tex]\( A \)[/tex]:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = 4 \)[/tex]
- [tex]\( d = -5 \)[/tex]
So, we have:
[tex]\[ \det(A) = (2 \cdot -5) - (3 \cdot 4) = -10 - 12 = -22 \][/tex]
### Step 2: Check if Matrix [tex]\( A \)[/tex] is Invertible
A matrix is invertible if its determinant is not zero. Since [tex]\(\det(A) = -22 \neq 0\)[/tex], matrix [tex]\( A \)[/tex] is invertible.
### Step 3: Calculate the Adjugate (Adjoint) of Matrix [tex]\( A \)[/tex]
The adjugate of a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( A \)[/tex] is given by the transpose of its cofactor matrix.
The cofactor matrix [tex]\( \text{C} \)[/tex] of matrix [tex]\( A \)[/tex] is:
[tex]\[ \text{C} = \left[\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right] \][/tex]
where [tex]\( C_{ij} \)[/tex] is the cofactor of the element at position [tex]\( (i, j) \)[/tex].
For [tex]\( A \)[/tex]:
1. [tex]\( C_{11} = \det \left(\left[\begin{array}{cc}-5\end{array}\right]\right) = -5 \)[/tex]
2. [tex]\( C_{12} = -\det \left(\left[\begin{array}{cc}4\end{array}\right]\right) = -4 \)[/tex]
3. [tex]\( C_{21} = -\det \left(\left[\begin{array}{cc}3\end{array}\right]\right) = -3 \)[/tex]
4. [tex]\( C_{22} = \det \left(\left[\begin{array}{cc}2\end{array}\right]\right) = 2 \)[/tex]
So, the cofactor matrix is:
[tex]\[ \text{C} = \left[\begin{array}{cc} -5 & -4 \\ -3 & 2 \end{array}\right] \][/tex]
The adjugate of [tex]\( A \)[/tex] is the transpose of the cofactor matrix:
[tex]\[ \text{adj}(A) = \left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right] \][/tex]
### Step 4: Calculate the Inverse of Matrix [tex]\( A \)[/tex]
The inverse of matrix [tex]\( A \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \][/tex]
Substituting the determinant and the adjugate into this formula, we get:
[tex]\[ A^{-1} = \frac{1}{-22} \left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right] = \left[\begin{array}{cc} \frac{5}{22} & \frac{3}{22} \\ \frac{4}{22} & -\frac{2}{22} \end{array}\right] \][/tex]
Simplify the fractions:
[tex]\[ A^{-1} = \left[\begin{array}{cc} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{array}\right] \][/tex]
To summarize, the results are:
1. Determinant of [tex]\( A \)[/tex]: [tex]\(-22\)[/tex]
2. Adjugate of [tex]\( A \)[/tex]: [tex]\(\left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right]\)[/tex]
3. Inverse of [tex]\( A \)[/tex]: [tex]\(\left[\begin{array}{cc} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{array}\right]\)[/tex]
### Step 1: Calculate the Determinant of Matrix [tex]\( A \)[/tex]
The determinant of a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( A = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \)[/tex] is given by:
[tex]\[ \det(A) = ad - bc \][/tex]
For our matrix [tex]\( A \)[/tex]:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = 4 \)[/tex]
- [tex]\( d = -5 \)[/tex]
So, we have:
[tex]\[ \det(A) = (2 \cdot -5) - (3 \cdot 4) = -10 - 12 = -22 \][/tex]
### Step 2: Check if Matrix [tex]\( A \)[/tex] is Invertible
A matrix is invertible if its determinant is not zero. Since [tex]\(\det(A) = -22 \neq 0\)[/tex], matrix [tex]\( A \)[/tex] is invertible.
### Step 3: Calculate the Adjugate (Adjoint) of Matrix [tex]\( A \)[/tex]
The adjugate of a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( A \)[/tex] is given by the transpose of its cofactor matrix.
The cofactor matrix [tex]\( \text{C} \)[/tex] of matrix [tex]\( A \)[/tex] is:
[tex]\[ \text{C} = \left[\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right] \][/tex]
where [tex]\( C_{ij} \)[/tex] is the cofactor of the element at position [tex]\( (i, j) \)[/tex].
For [tex]\( A \)[/tex]:
1. [tex]\( C_{11} = \det \left(\left[\begin{array}{cc}-5\end{array}\right]\right) = -5 \)[/tex]
2. [tex]\( C_{12} = -\det \left(\left[\begin{array}{cc}4\end{array}\right]\right) = -4 \)[/tex]
3. [tex]\( C_{21} = -\det \left(\left[\begin{array}{cc}3\end{array}\right]\right) = -3 \)[/tex]
4. [tex]\( C_{22} = \det \left(\left[\begin{array}{cc}2\end{array}\right]\right) = 2 \)[/tex]
So, the cofactor matrix is:
[tex]\[ \text{C} = \left[\begin{array}{cc} -5 & -4 \\ -3 & 2 \end{array}\right] \][/tex]
The adjugate of [tex]\( A \)[/tex] is the transpose of the cofactor matrix:
[tex]\[ \text{adj}(A) = \left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right] \][/tex]
### Step 4: Calculate the Inverse of Matrix [tex]\( A \)[/tex]
The inverse of matrix [tex]\( A \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \][/tex]
Substituting the determinant and the adjugate into this formula, we get:
[tex]\[ A^{-1} = \frac{1}{-22} \left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right] = \left[\begin{array}{cc} \frac{5}{22} & \frac{3}{22} \\ \frac{4}{22} & -\frac{2}{22} \end{array}\right] \][/tex]
Simplify the fractions:
[tex]\[ A^{-1} = \left[\begin{array}{cc} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{array}\right] \][/tex]
To summarize, the results are:
1. Determinant of [tex]\( A \)[/tex]: [tex]\(-22\)[/tex]
2. Adjugate of [tex]\( A \)[/tex]: [tex]\(\left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right]\)[/tex]
3. Inverse of [tex]\( A \)[/tex]: [tex]\(\left[\begin{array}{cc} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{array}\right]\)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.