Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the adjugate and inverse of the matrix [tex]\( A = \left[\begin{array}{cc}2 & 3 \\ 4 & -5\end{array}\right] \)[/tex], we can follow the steps below:
### Step 1: Calculate the Determinant of Matrix [tex]\( A \)[/tex]
The determinant of a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( A = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \)[/tex] is given by:
[tex]\[ \det(A) = ad - bc \][/tex]
For our matrix [tex]\( A \)[/tex]:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = 4 \)[/tex]
- [tex]\( d = -5 \)[/tex]
So, we have:
[tex]\[ \det(A) = (2 \cdot -5) - (3 \cdot 4) = -10 - 12 = -22 \][/tex]
### Step 2: Check if Matrix [tex]\( A \)[/tex] is Invertible
A matrix is invertible if its determinant is not zero. Since [tex]\(\det(A) = -22 \neq 0\)[/tex], matrix [tex]\( A \)[/tex] is invertible.
### Step 3: Calculate the Adjugate (Adjoint) of Matrix [tex]\( A \)[/tex]
The adjugate of a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( A \)[/tex] is given by the transpose of its cofactor matrix.
The cofactor matrix [tex]\( \text{C} \)[/tex] of matrix [tex]\( A \)[/tex] is:
[tex]\[ \text{C} = \left[\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right] \][/tex]
where [tex]\( C_{ij} \)[/tex] is the cofactor of the element at position [tex]\( (i, j) \)[/tex].
For [tex]\( A \)[/tex]:
1. [tex]\( C_{11} = \det \left(\left[\begin{array}{cc}-5\end{array}\right]\right) = -5 \)[/tex]
2. [tex]\( C_{12} = -\det \left(\left[\begin{array}{cc}4\end{array}\right]\right) = -4 \)[/tex]
3. [tex]\( C_{21} = -\det \left(\left[\begin{array}{cc}3\end{array}\right]\right) = -3 \)[/tex]
4. [tex]\( C_{22} = \det \left(\left[\begin{array}{cc}2\end{array}\right]\right) = 2 \)[/tex]
So, the cofactor matrix is:
[tex]\[ \text{C} = \left[\begin{array}{cc} -5 & -4 \\ -3 & 2 \end{array}\right] \][/tex]
The adjugate of [tex]\( A \)[/tex] is the transpose of the cofactor matrix:
[tex]\[ \text{adj}(A) = \left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right] \][/tex]
### Step 4: Calculate the Inverse of Matrix [tex]\( A \)[/tex]
The inverse of matrix [tex]\( A \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \][/tex]
Substituting the determinant and the adjugate into this formula, we get:
[tex]\[ A^{-1} = \frac{1}{-22} \left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right] = \left[\begin{array}{cc} \frac{5}{22} & \frac{3}{22} \\ \frac{4}{22} & -\frac{2}{22} \end{array}\right] \][/tex]
Simplify the fractions:
[tex]\[ A^{-1} = \left[\begin{array}{cc} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{array}\right] \][/tex]
To summarize, the results are:
1. Determinant of [tex]\( A \)[/tex]: [tex]\(-22\)[/tex]
2. Adjugate of [tex]\( A \)[/tex]: [tex]\(\left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right]\)[/tex]
3. Inverse of [tex]\( A \)[/tex]: [tex]\(\left[\begin{array}{cc} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{array}\right]\)[/tex]
### Step 1: Calculate the Determinant of Matrix [tex]\( A \)[/tex]
The determinant of a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( A = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \)[/tex] is given by:
[tex]\[ \det(A) = ad - bc \][/tex]
For our matrix [tex]\( A \)[/tex]:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = 4 \)[/tex]
- [tex]\( d = -5 \)[/tex]
So, we have:
[tex]\[ \det(A) = (2 \cdot -5) - (3 \cdot 4) = -10 - 12 = -22 \][/tex]
### Step 2: Check if Matrix [tex]\( A \)[/tex] is Invertible
A matrix is invertible if its determinant is not zero. Since [tex]\(\det(A) = -22 \neq 0\)[/tex], matrix [tex]\( A \)[/tex] is invertible.
### Step 3: Calculate the Adjugate (Adjoint) of Matrix [tex]\( A \)[/tex]
The adjugate of a [tex]\( 2 \times 2 \)[/tex] matrix [tex]\( A \)[/tex] is given by the transpose of its cofactor matrix.
The cofactor matrix [tex]\( \text{C} \)[/tex] of matrix [tex]\( A \)[/tex] is:
[tex]\[ \text{C} = \left[\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right] \][/tex]
where [tex]\( C_{ij} \)[/tex] is the cofactor of the element at position [tex]\( (i, j) \)[/tex].
For [tex]\( A \)[/tex]:
1. [tex]\( C_{11} = \det \left(\left[\begin{array}{cc}-5\end{array}\right]\right) = -5 \)[/tex]
2. [tex]\( C_{12} = -\det \left(\left[\begin{array}{cc}4\end{array}\right]\right) = -4 \)[/tex]
3. [tex]\( C_{21} = -\det \left(\left[\begin{array}{cc}3\end{array}\right]\right) = -3 \)[/tex]
4. [tex]\( C_{22} = \det \left(\left[\begin{array}{cc}2\end{array}\right]\right) = 2 \)[/tex]
So, the cofactor matrix is:
[tex]\[ \text{C} = \left[\begin{array}{cc} -5 & -4 \\ -3 & 2 \end{array}\right] \][/tex]
The adjugate of [tex]\( A \)[/tex] is the transpose of the cofactor matrix:
[tex]\[ \text{adj}(A) = \left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right] \][/tex]
### Step 4: Calculate the Inverse of Matrix [tex]\( A \)[/tex]
The inverse of matrix [tex]\( A \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \][/tex]
Substituting the determinant and the adjugate into this formula, we get:
[tex]\[ A^{-1} = \frac{1}{-22} \left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right] = \left[\begin{array}{cc} \frac{5}{22} & \frac{3}{22} \\ \frac{4}{22} & -\frac{2}{22} \end{array}\right] \][/tex]
Simplify the fractions:
[tex]\[ A^{-1} = \left[\begin{array}{cc} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{array}\right] \][/tex]
To summarize, the results are:
1. Determinant of [tex]\( A \)[/tex]: [tex]\(-22\)[/tex]
2. Adjugate of [tex]\( A \)[/tex]: [tex]\(\left[\begin{array}{cc} -5 & -3 \\ -4 & 2 \end{array}\right]\)[/tex]
3. Inverse of [tex]\( A \)[/tex]: [tex]\(\left[\begin{array}{cc} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{array}\right]\)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.