At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the inverse of the matrix [tex]\( A = \begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix} \)[/tex], we need to follow these steps:
### Step 1: Calculate the Determinant of [tex]\( A \)[/tex]
The determinant of a 2x2 matrix [tex]\( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex] is given by:
[tex]\[ \text{det}(A) = ad - bc \][/tex]
For the given matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (2 \cdot -5) - (3 \cdot 4) = -10 - 12 = -22 \][/tex]
### Step 2: Calculate the Cofactor Matrix
The cofactor matrix is derived by finding the minors of each element and then applying a sign change pattern based on their position.
The minors for each element are:
- Minor of 2 (top-left): determinant of the submatrix formed by removing the 1st row and 1st column, which is [tex]\( -5 \)[/tex]
- Minor of 3 (top-right): determinant of the submatrix formed by removing the 1st row and 2nd column, which is [tex]\( 4 \)[/tex]
- Minor of 4 (bottom-left): determinant of the submatrix formed by removing the 2nd row and 1st column, which is [tex]\( 3 \)[/tex]
- Minor of -5 (bottom-right): determinant of the submatrix formed by removing the 2nd row and 2nd column, which is [tex]\( 2 \)[/tex]
Now apply the sign changes:
[tex]\[ \begin{pmatrix} -5 & -4 \\ -3 & 2 \end{pmatrix} \][/tex]
### Step 3: Find the Adjugate Matrix
The adjugate matrix (or adjoint matrix) is the transpose of the cofactor matrix. So, we take the transpose of the cofactor matrix:
[tex]\[ \text{adj}(A) = \begin{pmatrix} -5 & -4 \\ -3 & 2 \end{pmatrix}^T = \begin{pmatrix} -5 & -3 \\ -4 & 2 \end{pmatrix} \][/tex]
### Step 4: Calculate the Inverse of [tex]\( A \)[/tex]
The inverse of the matrix [tex]\( A \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \][/tex]
Substitute the values we found:
[tex]\[ A^{-1} = \frac{1}{-22} \begin{pmatrix} -5 & -3 \\ -4 & 2 \end{pmatrix} \][/tex]
Multiply each element of the adjugate matrix by [tex]\( \frac{1}{-22} \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{-5}{-22} & \frac{-3}{-22} \\ \frac{-4}{-22} & \frac{2}{-22} \end{pmatrix} = \begin{pmatrix} \frac{5}{22} & \frac{3}{22} \\ \frac{4}{22} & \frac{-2}{22} \end{pmatrix} = \begin{pmatrix} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{pmatrix} \][/tex]
So, the inverse of [tex]\( A \)[/tex] is:
[tex]\[ A^{-1} = \begin{pmatrix} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{pmatrix} \][/tex]
### Step 1: Calculate the Determinant of [tex]\( A \)[/tex]
The determinant of a 2x2 matrix [tex]\( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)[/tex] is given by:
[tex]\[ \text{det}(A) = ad - bc \][/tex]
For the given matrix [tex]\( A \)[/tex]:
[tex]\[ \text{det}(A) = (2 \cdot -5) - (3 \cdot 4) = -10 - 12 = -22 \][/tex]
### Step 2: Calculate the Cofactor Matrix
The cofactor matrix is derived by finding the minors of each element and then applying a sign change pattern based on their position.
The minors for each element are:
- Minor of 2 (top-left): determinant of the submatrix formed by removing the 1st row and 1st column, which is [tex]\( -5 \)[/tex]
- Minor of 3 (top-right): determinant of the submatrix formed by removing the 1st row and 2nd column, which is [tex]\( 4 \)[/tex]
- Minor of 4 (bottom-left): determinant of the submatrix formed by removing the 2nd row and 1st column, which is [tex]\( 3 \)[/tex]
- Minor of -5 (bottom-right): determinant of the submatrix formed by removing the 2nd row and 2nd column, which is [tex]\( 2 \)[/tex]
Now apply the sign changes:
[tex]\[ \begin{pmatrix} -5 & -4 \\ -3 & 2 \end{pmatrix} \][/tex]
### Step 3: Find the Adjugate Matrix
The adjugate matrix (or adjoint matrix) is the transpose of the cofactor matrix. So, we take the transpose of the cofactor matrix:
[tex]\[ \text{adj}(A) = \begin{pmatrix} -5 & -4 \\ -3 & 2 \end{pmatrix}^T = \begin{pmatrix} -5 & -3 \\ -4 & 2 \end{pmatrix} \][/tex]
### Step 4: Calculate the Inverse of [tex]\( A \)[/tex]
The inverse of the matrix [tex]\( A \)[/tex] is given by:
[tex]\[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \][/tex]
Substitute the values we found:
[tex]\[ A^{-1} = \frac{1}{-22} \begin{pmatrix} -5 & -3 \\ -4 & 2 \end{pmatrix} \][/tex]
Multiply each element of the adjugate matrix by [tex]\( \frac{1}{-22} \)[/tex]:
[tex]\[ A^{-1} = \begin{pmatrix} \frac{-5}{-22} & \frac{-3}{-22} \\ \frac{-4}{-22} & \frac{2}{-22} \end{pmatrix} = \begin{pmatrix} \frac{5}{22} & \frac{3}{22} \\ \frac{4}{22} & \frac{-2}{22} \end{pmatrix} = \begin{pmatrix} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{pmatrix} \][/tex]
So, the inverse of [tex]\( A \)[/tex] is:
[tex]\[ A^{-1} = \begin{pmatrix} 0.22727273 & 0.13636364 \\ 0.18181818 & -0.09090909 \end{pmatrix} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.