Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's properly match each description with the corresponding transformation of the function [tex]\( f(x) \)[/tex].
### 1. [tex]\( f(x) - 4 \)[/tex]:
- This expression represents the function [tex]\( f(x) \)[/tex] translated 4 units down. When subtracting a value from the function, it shifts the graph down by that amount.
Description: [tex]\( f(x) \)[/tex] is translated 4 units down.
### 2. [tex]\( f(x-4) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] translated 4 units to the right. When a function's input is replaced with [tex]\( x - a \)[/tex], it results in the function shifting to the right by [tex]\( a \)[/tex] units.
Description: [tex]\( f(x) \)[/tex] is translated 4 units right.
### 3. [tex]\( f(x) + 4 \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] translated 4 units up. Adding a value to the function shifts the graph up by that amount.
Description: [tex]\( f(x) \)[/tex] is translated 4 units up.
### 4. [tex]\( 4 \cdot f(x) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] vertically stretched by a factor of 4. Multiplying the function by a constant greater than 1 stretches the graph vertically.
Description: [tex]\( f(x) \)[/tex] is vertically stretched by a factor of 4.
### 5. [tex]\( \frac{1}{4} f(x) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] vertically compressed by a factor of 4. Multiplying the function by a constant between 0 and 1 compresses the graph vertically.
Description: [tex]\( f(x) \)[/tex] is vertically compressed by a factor of 4.
So, the correct matching is:
- [tex]\( f(x) - 4 \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units down.
- [tex]\( f(x-4) \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units right.
- [tex]\( f(x) + 4 \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units up.
- [tex]\( 4 \cdot f(x) \)[/tex]: [tex]\( f(x) \)[/tex] is vertically stretched by a factor of 4.
- [tex]\( \frac{1}{4} f(x) \)[/tex]: [tex]\( f(x) \)[/tex] is vertically compressed by a factor of 4.
### 1. [tex]\( f(x) - 4 \)[/tex]:
- This expression represents the function [tex]\( f(x) \)[/tex] translated 4 units down. When subtracting a value from the function, it shifts the graph down by that amount.
Description: [tex]\( f(x) \)[/tex] is translated 4 units down.
### 2. [tex]\( f(x-4) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] translated 4 units to the right. When a function's input is replaced with [tex]\( x - a \)[/tex], it results in the function shifting to the right by [tex]\( a \)[/tex] units.
Description: [tex]\( f(x) \)[/tex] is translated 4 units right.
### 3. [tex]\( f(x) + 4 \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] translated 4 units up. Adding a value to the function shifts the graph up by that amount.
Description: [tex]\( f(x) \)[/tex] is translated 4 units up.
### 4. [tex]\( 4 \cdot f(x) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] vertically stretched by a factor of 4. Multiplying the function by a constant greater than 1 stretches the graph vertically.
Description: [tex]\( f(x) \)[/tex] is vertically stretched by a factor of 4.
### 5. [tex]\( \frac{1}{4} f(x) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] vertically compressed by a factor of 4. Multiplying the function by a constant between 0 and 1 compresses the graph vertically.
Description: [tex]\( f(x) \)[/tex] is vertically compressed by a factor of 4.
So, the correct matching is:
- [tex]\( f(x) - 4 \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units down.
- [tex]\( f(x-4) \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units right.
- [tex]\( f(x) + 4 \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units up.
- [tex]\( 4 \cdot f(x) \)[/tex]: [tex]\( f(x) \)[/tex] is vertically stretched by a factor of 4.
- [tex]\( \frac{1}{4} f(x) \)[/tex]: [tex]\( f(x) \)[/tex] is vertically compressed by a factor of 4.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.