Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's properly match each description with the corresponding transformation of the function [tex]\( f(x) \)[/tex].
### 1. [tex]\( f(x) - 4 \)[/tex]:
- This expression represents the function [tex]\( f(x) \)[/tex] translated 4 units down. When subtracting a value from the function, it shifts the graph down by that amount.
Description: [tex]\( f(x) \)[/tex] is translated 4 units down.
### 2. [tex]\( f(x-4) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] translated 4 units to the right. When a function's input is replaced with [tex]\( x - a \)[/tex], it results in the function shifting to the right by [tex]\( a \)[/tex] units.
Description: [tex]\( f(x) \)[/tex] is translated 4 units right.
### 3. [tex]\( f(x) + 4 \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] translated 4 units up. Adding a value to the function shifts the graph up by that amount.
Description: [tex]\( f(x) \)[/tex] is translated 4 units up.
### 4. [tex]\( 4 \cdot f(x) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] vertically stretched by a factor of 4. Multiplying the function by a constant greater than 1 stretches the graph vertically.
Description: [tex]\( f(x) \)[/tex] is vertically stretched by a factor of 4.
### 5. [tex]\( \frac{1}{4} f(x) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] vertically compressed by a factor of 4. Multiplying the function by a constant between 0 and 1 compresses the graph vertically.
Description: [tex]\( f(x) \)[/tex] is vertically compressed by a factor of 4.
So, the correct matching is:
- [tex]\( f(x) - 4 \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units down.
- [tex]\( f(x-4) \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units right.
- [tex]\( f(x) + 4 \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units up.
- [tex]\( 4 \cdot f(x) \)[/tex]: [tex]\( f(x) \)[/tex] is vertically stretched by a factor of 4.
- [tex]\( \frac{1}{4} f(x) \)[/tex]: [tex]\( f(x) \)[/tex] is vertically compressed by a factor of 4.
### 1. [tex]\( f(x) - 4 \)[/tex]:
- This expression represents the function [tex]\( f(x) \)[/tex] translated 4 units down. When subtracting a value from the function, it shifts the graph down by that amount.
Description: [tex]\( f(x) \)[/tex] is translated 4 units down.
### 2. [tex]\( f(x-4) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] translated 4 units to the right. When a function's input is replaced with [tex]\( x - a \)[/tex], it results in the function shifting to the right by [tex]\( a \)[/tex] units.
Description: [tex]\( f(x) \)[/tex] is translated 4 units right.
### 3. [tex]\( f(x) + 4 \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] translated 4 units up. Adding a value to the function shifts the graph up by that amount.
Description: [tex]\( f(x) \)[/tex] is translated 4 units up.
### 4. [tex]\( 4 \cdot f(x) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] vertically stretched by a factor of 4. Multiplying the function by a constant greater than 1 stretches the graph vertically.
Description: [tex]\( f(x) \)[/tex] is vertically stretched by a factor of 4.
### 5. [tex]\( \frac{1}{4} f(x) \)[/tex]:
- This represents the function [tex]\( f(x) \)[/tex] vertically compressed by a factor of 4. Multiplying the function by a constant between 0 and 1 compresses the graph vertically.
Description: [tex]\( f(x) \)[/tex] is vertically compressed by a factor of 4.
So, the correct matching is:
- [tex]\( f(x) - 4 \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units down.
- [tex]\( f(x-4) \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units right.
- [tex]\( f(x) + 4 \)[/tex]: [tex]\( f(x) \)[/tex] is translated 4 units up.
- [tex]\( 4 \cdot f(x) \)[/tex]: [tex]\( f(x) \)[/tex] is vertically stretched by a factor of 4.
- [tex]\( \frac{1}{4} f(x) \)[/tex]: [tex]\( f(x) \)[/tex] is vertically compressed by a factor of 4.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.