Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem, we need to determine the practical range of the function [tex]\( f(t) = 2.7t \)[/tex], which represents the distance Hong hikes in [tex]\( t \)[/tex] hours. We are given that Hong hikes at least 1 hour but no more than 4 hours, and her average hiking rate is 2.7 miles per hour.
Let's analyze the function and the given constraints step by step:
1. Understanding the function: The function [tex]\( f(t) = 2.7t \)[/tex] indicates the distance Hong hikes based on the time [tex]\( t \)[/tex] in hours. The rate, 2.7 miles per hour, is multiplied by the time to give the total distance.
2. Identifying the domain: The domain of our function, which represents the possible values for [tex]\( t \)[/tex], is given as [tex]\( 1 \leq t \leq 4 \)[/tex]. This means [tex]\( t \)[/tex] can be any real number between 1 and 4, inclusive.
3. Calculating the minimum distance: To find the minimum distance Hong can hike, we substitute the smallest value of [tex]\( t \)[/tex] into the function:
[tex]\[ f(1) = 2.7 \times 1 = 2.7 \text{ miles} \][/tex]
4. Calculating the maximum distance: To find the maximum distance Hong can hike, we substitute the largest value of [tex]\( t \)[/tex] into the function:
[tex]\[ f(4) = 2.7 \times 4 = 10.8 \text{ miles} \][/tex]
5. Determining the practical range: The practical range of the function [tex]\( f(t) \)[/tex] is the set of all possible distances that Hong can hike given the time constraints. Since [tex]\( t \)[/tex] ranges from 1 to 4, the distance [tex]\( f(t) \)[/tex] will range from 2.7 miles to 10.8 miles.
Therefore, the practical range of the function is all real numbers from 2.7 to 10.8, inclusive.
So, the correct answer is:
- All real numbers from 2.7 to 10.8, inclusive
Let's analyze the function and the given constraints step by step:
1. Understanding the function: The function [tex]\( f(t) = 2.7t \)[/tex] indicates the distance Hong hikes based on the time [tex]\( t \)[/tex] in hours. The rate, 2.7 miles per hour, is multiplied by the time to give the total distance.
2. Identifying the domain: The domain of our function, which represents the possible values for [tex]\( t \)[/tex], is given as [tex]\( 1 \leq t \leq 4 \)[/tex]. This means [tex]\( t \)[/tex] can be any real number between 1 and 4, inclusive.
3. Calculating the minimum distance: To find the minimum distance Hong can hike, we substitute the smallest value of [tex]\( t \)[/tex] into the function:
[tex]\[ f(1) = 2.7 \times 1 = 2.7 \text{ miles} \][/tex]
4. Calculating the maximum distance: To find the maximum distance Hong can hike, we substitute the largest value of [tex]\( t \)[/tex] into the function:
[tex]\[ f(4) = 2.7 \times 4 = 10.8 \text{ miles} \][/tex]
5. Determining the practical range: The practical range of the function [tex]\( f(t) \)[/tex] is the set of all possible distances that Hong can hike given the time constraints. Since [tex]\( t \)[/tex] ranges from 1 to 4, the distance [tex]\( f(t) \)[/tex] will range from 2.7 miles to 10.8 miles.
Therefore, the practical range of the function is all real numbers from 2.7 to 10.8, inclusive.
So, the correct answer is:
- All real numbers from 2.7 to 10.8, inclusive
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.