Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

(b) Construct a quadratic equation whose roots are [tex]\frac{4}{5}[/tex] and [tex]-2 \frac{2}{3}[/tex].

Sagot :

To construct a quadratic equation given its roots, we need to use the fact that for a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], if [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] are the roots, then:

1. The sum of the roots, [tex]\(\alpha + \beta = -\frac{b}{a}\)[/tex]
2. The product of the roots, [tex]\(\alpha \beta = \frac{c}{a}\)[/tex]

Given the roots [tex]\(\frac{4}{5}\)[/tex] and [tex]\(-2 \frac{2}{3}\)[/tex], we first convert these numbers to a common fraction form:

- [tex]\(\frac{4}{5}\)[/tex] is already in fraction form.
- [tex]\(-2 \frac{2}{3}\)[/tex] can be converted to an improper fraction:
[tex]\[ -2 \frac{2}{3} = -\left(2 + \frac{2}{3}\right) = -\left(\frac{6}{3} + \frac{2}{3}\right) = -\frac{8}{3} \][/tex]

Now, let's denote the roots as:
[tex]\[ \alpha = \frac{4}{5}, \quad \beta = -\frac{8}{3} \][/tex]

Step 1: Calculate the sum of the roots.

Sum of the roots [tex]\(\alpha + \beta\)[/tex] is:
[tex]\[ \alpha + \beta = \frac{4}{5} + \left( -\frac{8}{3} \right) \][/tex]

To add these fractions, we need a common denominator. The least common multiple of 5 and 3 is 15. Converting both fractions to have this common denominator:

[tex]\[ \frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15}, \quad -\frac{8}{3} = \frac{-8 \times 5}{3 \times 5} = \frac{-40}{15} \][/tex]

Now we can add them:
[tex]\[ \frac{12}{15} + \frac{-40}{15} = \frac{12 - 40}{15} = \frac{-28}{15} \][/tex]

Step 2: Calculate the product of the roots.

Product of the roots [tex]\(\alpha \beta\)[/tex] is:
[tex]\[ \alpha \beta = \left(\frac{4}{5}\right) \left(-\frac{8}{3}\right) \][/tex]

Multiplying the fractions:
[tex]\[ \left(\frac{4}{5}\right) \left(-\frac{8}{3}\right) = \frac{4 \times (-8)}{5 \times 3} = \frac{-32}{15} \][/tex]

Step 3: Write the quadratic equation using the sum and product of the roots.

In general, the quadratic equation based on the sum and product of the roots is given by:
[tex]\[ x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0 \][/tex]

Plugging in our values:
[tex]\[ x^2 - \left(\frac{-28}{15}\right)x + \left(\frac{-32}{15}\right) = 0 \][/tex]

Simplifying the signs:
[tex]\[ x^2 + \frac{28}{15}x - \frac{32}{15} = 0 \][/tex]

Thus, the quadratic equation whose roots are [tex]\(\frac{4}{5}\)[/tex] and [tex]\(-2\frac{2}{3}\)[/tex] is:
[tex]\[ x^2 + \frac{28}{15}x - \frac{32}{15} = 0 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.