Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve the given problems step-by-step for the matrix [tex]\( A \)[/tex] and its eigenvalues.
### Part (a): Finding the values of [tex]\(\lambda_1\)[/tex] and [tex]\(\lambda_2\)[/tex]
Given the matrix:
[tex]\[ A = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} \][/tex]
and [tex]\(I\)[/tex] as the [tex]\(2 \times 2\)[/tex] identity matrix:
[tex]\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
The condition [tex]\(\operatorname{det}(A - \lambda I) = 0\)[/tex] gives us the characteristic polynomial of the matrix [tex]\(A\)[/tex].
First, compute [tex]\(A - \lambda I\)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} \][/tex]
Next, compute the determinant:
[tex]\[ \operatorname{det}(A - \lambda I) = \operatorname{det} \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} = (3 - \lambda)(2 - \lambda) - (4)(5) \][/tex]
Expanding the determinant:
[tex]\[ (3 - \lambda)(2 - \lambda) - 20 = 6 - 3\lambda - 2\lambda + \lambda^2 - 20 \][/tex]
[tex]\[ = \lambda^2 - 5\lambda - 14 \][/tex]
Thus, the characteristic equation is:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
To find the eigenvalues, solve this quadratic equation:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
Using the quadratic formula [tex]\(\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -14\)[/tex]:
[tex]\[ \lambda = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-14)}}{2(1)} = \frac{5 \pm \sqrt{25 + 56}}{2} = \frac{5 \pm \sqrt{81}}{2} \][/tex]
[tex]\[ = \frac{5 \pm 9}{2} \][/tex]
Therefore, the eigenvalues are:
[tex]\[ \lambda_1 = \frac{5 + 9}{2} = 7 \][/tex]
[tex]\[ \lambda_2 = \frac{5 - 9}{2} = -2 \][/tex]
Given [tex]\(\lambda_1 > \lambda_2\)[/tex], we have:
[tex]\[ \lambda_1 = 7 \][/tex]
[tex]\[ \lambda_2 = -2 \][/tex]
### Part (b): Finding the eigenvectors
To find the eigenvectors for [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex], we solve the system [tex]\((A - \lambda I)\mathbf{v} = 0\)[/tex] for each eigenvalue.
#### Eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex]:
[tex]\[ A - 7I = \begin{pmatrix} 3 - 7 & 4 \\ 5 & 2 - 7 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ -4x + 4y = 0 \][/tex]
[tex]\[ 5x - 5y = 0 \][/tex]
Both equations reduce to:
[tex]\[ x = y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex] is:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
#### Eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex]:
[tex]\[ A - (-2)I = \begin{pmatrix} 3 + 2 & 4 \\ 5 & 2 + 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ 5x + 4y = 0 \][/tex]
This reduces to:
[tex]\[ x = -\frac{4}{5}y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex] is:
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
In conclusion:
- The eigenvalues are: [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex].
- The corresponding eigenvectors are:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
### Part (a): Finding the values of [tex]\(\lambda_1\)[/tex] and [tex]\(\lambda_2\)[/tex]
Given the matrix:
[tex]\[ A = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} \][/tex]
and [tex]\(I\)[/tex] as the [tex]\(2 \times 2\)[/tex] identity matrix:
[tex]\[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \][/tex]
The condition [tex]\(\operatorname{det}(A - \lambda I) = 0\)[/tex] gives us the characteristic polynomial of the matrix [tex]\(A\)[/tex].
First, compute [tex]\(A - \lambda I\)[/tex]:
[tex]\[ A - \lambda I = \begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} \][/tex]
Next, compute the determinant:
[tex]\[ \operatorname{det}(A - \lambda I) = \operatorname{det} \begin{pmatrix} 3 - \lambda & 4 \\ 5 & 2 - \lambda \end{pmatrix} = (3 - \lambda)(2 - \lambda) - (4)(5) \][/tex]
Expanding the determinant:
[tex]\[ (3 - \lambda)(2 - \lambda) - 20 = 6 - 3\lambda - 2\lambda + \lambda^2 - 20 \][/tex]
[tex]\[ = \lambda^2 - 5\lambda - 14 \][/tex]
Thus, the characteristic equation is:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
To find the eigenvalues, solve this quadratic equation:
[tex]\[ \lambda^2 - 5\lambda - 14 = 0 \][/tex]
Using the quadratic formula [tex]\(\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex] where [tex]\(a = 1\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -14\)[/tex]:
[tex]\[ \lambda = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-14)}}{2(1)} = \frac{5 \pm \sqrt{25 + 56}}{2} = \frac{5 \pm \sqrt{81}}{2} \][/tex]
[tex]\[ = \frac{5 \pm 9}{2} \][/tex]
Therefore, the eigenvalues are:
[tex]\[ \lambda_1 = \frac{5 + 9}{2} = 7 \][/tex]
[tex]\[ \lambda_2 = \frac{5 - 9}{2} = -2 \][/tex]
Given [tex]\(\lambda_1 > \lambda_2\)[/tex], we have:
[tex]\[ \lambda_1 = 7 \][/tex]
[tex]\[ \lambda_2 = -2 \][/tex]
### Part (b): Finding the eigenvectors
To find the eigenvectors for [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex], we solve the system [tex]\((A - \lambda I)\mathbf{v} = 0\)[/tex] for each eigenvalue.
#### Eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex]:
[tex]\[ A - 7I = \begin{pmatrix} 3 - 7 & 4 \\ 5 & 2 - 7 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} -4 & 4 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ -4x + 4y = 0 \][/tex]
[tex]\[ 5x - 5y = 0 \][/tex]
Both equations reduce to:
[tex]\[ x = y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_1 = 7\)[/tex] is:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
#### Eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex]:
[tex]\[ A - (-2)I = \begin{pmatrix} 3 + 2 & 4 \\ 5 & 2 + 2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \][/tex]
The system of linear equations:
[tex]\[ \begin{pmatrix} 5 & 4 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \][/tex]
Which simplifies to:
[tex]\[ 5x + 4y = 0 \][/tex]
This reduces to:
[tex]\[ x = -\frac{4}{5}y \][/tex]
Thus, an eigenvector corresponding to [tex]\(\lambda_2 = -2\)[/tex] is:
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
In conclusion:
- The eigenvalues are: [tex]\(\lambda_1 = 7\)[/tex] and [tex]\(\lambda_2 = -2\)[/tex].
- The corresponding eigenvectors are:
[tex]\[ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{v_2} = \begin{pmatrix} -4 \\ 5 \end{pmatrix} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.