Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Alright, let's solve the equation [tex]\(\left(\frac{1}{x}\right)^a = x^3\)[/tex] step-by-step.
1. Simplify the left-hand side:
[tex]\[\left(\frac{1}{x}\right)^a\][/tex]
This can be rewritten using the properties of exponents:
[tex]\[\left(\frac{1}{x}\right)^a = \frac{1^a}{x^a} = \frac{1}{x^a}\][/tex]
So the equation now becomes:
[tex]\[\frac{1}{x^a} = x^3\][/tex]
2. Clear the fraction by multiplying both sides by [tex]\(x^a\)[/tex]:
[tex]\[\frac{1}{x^a} \cdot x^a = x^3 \cdot x^a\][/tex]
This simplifies to:
[tex]\[1 = x^{3 + a}\][/tex]
3. Find the solution for [tex]\(x\)[/tex]:
For the equation [tex]\(1 = x^{3 + a}\)[/tex] to hold true, [tex]\(x^{3 + a}\)[/tex] must be equal to 1. There are specific values of [tex]\(x\)[/tex] that satisfy this equation, depending on the value of the exponent [tex]\(3 + a\)[/tex]:
If [tex]\(x = 1\)[/tex]:
[tex]\[1^{3 + a} = 1\][/tex]
This holds true for any value of [tex]\(a\)[/tex].
Consequently, [tex]\(x = 1\)[/tex] is a valid solution to the equation.
Thus, the solution to the equation [tex]\(\left(\frac{1}{x}\right)^a = x^3\)[/tex] is:
[tex]\[ x = 1 \][/tex]
Therefore, [tex]\(x = 1\)[/tex] is the value that satisfies the original equation.
1. Simplify the left-hand side:
[tex]\[\left(\frac{1}{x}\right)^a\][/tex]
This can be rewritten using the properties of exponents:
[tex]\[\left(\frac{1}{x}\right)^a = \frac{1^a}{x^a} = \frac{1}{x^a}\][/tex]
So the equation now becomes:
[tex]\[\frac{1}{x^a} = x^3\][/tex]
2. Clear the fraction by multiplying both sides by [tex]\(x^a\)[/tex]:
[tex]\[\frac{1}{x^a} \cdot x^a = x^3 \cdot x^a\][/tex]
This simplifies to:
[tex]\[1 = x^{3 + a}\][/tex]
3. Find the solution for [tex]\(x\)[/tex]:
For the equation [tex]\(1 = x^{3 + a}\)[/tex] to hold true, [tex]\(x^{3 + a}\)[/tex] must be equal to 1. There are specific values of [tex]\(x\)[/tex] that satisfy this equation, depending on the value of the exponent [tex]\(3 + a\)[/tex]:
If [tex]\(x = 1\)[/tex]:
[tex]\[1^{3 + a} = 1\][/tex]
This holds true for any value of [tex]\(a\)[/tex].
Consequently, [tex]\(x = 1\)[/tex] is a valid solution to the equation.
Thus, the solution to the equation [tex]\(\left(\frac{1}{x}\right)^a = x^3\)[/tex] is:
[tex]\[ x = 1 \][/tex]
Therefore, [tex]\(x = 1\)[/tex] is the value that satisfies the original equation.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.