Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the number of atoms of Bismuth (Bi) in a 41.8-gram sample, we need to follow these steps:
1. Determine the molar mass of Bismuth (Bi):
- The molar mass of Bismuth (Bi) is given as 208.98 grams per mole (g/mol).
2. Calculate the number of moles of Bi:
- To calculate the number of moles, we use the formula:
[tex]\[ \text{moles of Bi} = \frac{\text{mass of the sample}}{\text{molar mass of Bi}} \][/tex]
- Given:
[tex]\[ \text{mass of the sample} = 41.8 \text{ grams} \][/tex]
[tex]\[ \text{molar mass of Bi} = 208.98 \text{ g/mol} \][/tex]
- Substituting these values into the formula:
[tex]\[ \text{moles of Bi} = \frac{41.8 \text{ grams}}{208.98 \text{ g/mol}} \approx 0.20001914058761602 \text{ moles} \][/tex]
3. Use Avogadro's Number to calculate the number of atoms of Bi:
- Avogadro's Number is given as [tex]\(6.022 \times 10^{23}\)[/tex] atoms per mole.
- To find the number of atoms, we multiply the number of moles by Avogadro's Number:
[tex]\[ \text{number of atoms of Bi} = \text{moles of Bi} \times \text{Avogadro's Number} \][/tex]
- Substituting the values:
[tex]\[ \text{number of atoms of Bi} = 0.20001914058761602 \text{ moles} \times 6.022 \times 10^{23} \text{ atoms/mole} \approx 1.2045152646186236 \times 10^{23} \text{ atoms} \][/tex]
Therefore, in a 41.8 gram sample of Bismuth, there are approximately [tex]\(1.2045152646186236 \times 10^{23}\)[/tex] atoms of Bi.
1. Determine the molar mass of Bismuth (Bi):
- The molar mass of Bismuth (Bi) is given as 208.98 grams per mole (g/mol).
2. Calculate the number of moles of Bi:
- To calculate the number of moles, we use the formula:
[tex]\[ \text{moles of Bi} = \frac{\text{mass of the sample}}{\text{molar mass of Bi}} \][/tex]
- Given:
[tex]\[ \text{mass of the sample} = 41.8 \text{ grams} \][/tex]
[tex]\[ \text{molar mass of Bi} = 208.98 \text{ g/mol} \][/tex]
- Substituting these values into the formula:
[tex]\[ \text{moles of Bi} = \frac{41.8 \text{ grams}}{208.98 \text{ g/mol}} \approx 0.20001914058761602 \text{ moles} \][/tex]
3. Use Avogadro's Number to calculate the number of atoms of Bi:
- Avogadro's Number is given as [tex]\(6.022 \times 10^{23}\)[/tex] atoms per mole.
- To find the number of atoms, we multiply the number of moles by Avogadro's Number:
[tex]\[ \text{number of atoms of Bi} = \text{moles of Bi} \times \text{Avogadro's Number} \][/tex]
- Substituting the values:
[tex]\[ \text{number of atoms of Bi} = 0.20001914058761602 \text{ moles} \times 6.022 \times 10^{23} \text{ atoms/mole} \approx 1.2045152646186236 \times 10^{23} \text{ atoms} \][/tex]
Therefore, in a 41.8 gram sample of Bismuth, there are approximately [tex]\(1.2045152646186236 \times 10^{23}\)[/tex] atoms of Bi.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.