Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the number of atoms of Bismuth (Bi) in a 41.8-gram sample, we need to follow these steps:
1. Determine the molar mass of Bismuth (Bi):
- The molar mass of Bismuth (Bi) is given as 208.98 grams per mole (g/mol).
2. Calculate the number of moles of Bi:
- To calculate the number of moles, we use the formula:
[tex]\[ \text{moles of Bi} = \frac{\text{mass of the sample}}{\text{molar mass of Bi}} \][/tex]
- Given:
[tex]\[ \text{mass of the sample} = 41.8 \text{ grams} \][/tex]
[tex]\[ \text{molar mass of Bi} = 208.98 \text{ g/mol} \][/tex]
- Substituting these values into the formula:
[tex]\[ \text{moles of Bi} = \frac{41.8 \text{ grams}}{208.98 \text{ g/mol}} \approx 0.20001914058761602 \text{ moles} \][/tex]
3. Use Avogadro's Number to calculate the number of atoms of Bi:
- Avogadro's Number is given as [tex]\(6.022 \times 10^{23}\)[/tex] atoms per mole.
- To find the number of atoms, we multiply the number of moles by Avogadro's Number:
[tex]\[ \text{number of atoms of Bi} = \text{moles of Bi} \times \text{Avogadro's Number} \][/tex]
- Substituting the values:
[tex]\[ \text{number of atoms of Bi} = 0.20001914058761602 \text{ moles} \times 6.022 \times 10^{23} \text{ atoms/mole} \approx 1.2045152646186236 \times 10^{23} \text{ atoms} \][/tex]
Therefore, in a 41.8 gram sample of Bismuth, there are approximately [tex]\(1.2045152646186236 \times 10^{23}\)[/tex] atoms of Bi.
1. Determine the molar mass of Bismuth (Bi):
- The molar mass of Bismuth (Bi) is given as 208.98 grams per mole (g/mol).
2. Calculate the number of moles of Bi:
- To calculate the number of moles, we use the formula:
[tex]\[ \text{moles of Bi} = \frac{\text{mass of the sample}}{\text{molar mass of Bi}} \][/tex]
- Given:
[tex]\[ \text{mass of the sample} = 41.8 \text{ grams} \][/tex]
[tex]\[ \text{molar mass of Bi} = 208.98 \text{ g/mol} \][/tex]
- Substituting these values into the formula:
[tex]\[ \text{moles of Bi} = \frac{41.8 \text{ grams}}{208.98 \text{ g/mol}} \approx 0.20001914058761602 \text{ moles} \][/tex]
3. Use Avogadro's Number to calculate the number of atoms of Bi:
- Avogadro's Number is given as [tex]\(6.022 \times 10^{23}\)[/tex] atoms per mole.
- To find the number of atoms, we multiply the number of moles by Avogadro's Number:
[tex]\[ \text{number of atoms of Bi} = \text{moles of Bi} \times \text{Avogadro's Number} \][/tex]
- Substituting the values:
[tex]\[ \text{number of atoms of Bi} = 0.20001914058761602 \text{ moles} \times 6.022 \times 10^{23} \text{ atoms/mole} \approx 1.2045152646186236 \times 10^{23} \text{ atoms} \][/tex]
Therefore, in a 41.8 gram sample of Bismuth, there are approximately [tex]\(1.2045152646186236 \times 10^{23}\)[/tex] atoms of Bi.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.