Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's solve the expression [tex]\( 2^{\log _{2 \sqrt{2}} 27} \)[/tex] step-by-step.
1. Understand the expression: We are given [tex]\( 2^{\log _{2 \sqrt{2}} 27} \)[/tex]. Our goal is to simplify this expression to a real number.
2. Change the base of the logarithm: The logarithm [tex]\(\log_{2\sqrt{2}} 27\)[/tex] can be converted to a base-2 logarithm using the change-of-base formula:
[tex]\[ \log_{2\sqrt{2}} 27 = \frac{\log_{2} 27}{\log_{2} (2\sqrt{2})} \][/tex]
3. Simplify the denominator: Let's simplify [tex]\(\log_{2} (2\sqrt{2})\)[/tex]:
[tex]\[ 2\sqrt{2} = 2 \cdot 2^{1/2} = 2^{1 + 1/2} = 2^{3/2} \][/tex]
Thus,
[tex]\[ \log_{2} (2\sqrt{2}) = \log_{2} (2^{3/2}) = \frac{3}{2} \][/tex]
4. Substitute back into the expression: Now substitute [tex]\(\log_{2} (2\sqrt{2})\)[/tex] back into our change-of-base formula:
[tex]\[ \log_{2\sqrt{2}} 27 = \frac{\log_{2} 27}{3/2} = \frac{2}{3} \log_{2} 27 \][/tex]
5. Simplify the power: Now we need to simplify [tex]\( 2^{\log_{2\sqrt{2}} 27} \)[/tex]:
[tex]\[ 2^{\log_{2\sqrt{2}} 27} = 2^{(\frac{2}{3} \log_{2} 27)} \][/tex]
6. Substitute values: We need the value of [tex]\(\log_{2} 27\)[/tex]. We know it is approximately [tex]\( 4.754887502163469 \)[/tex].
Using this value:
[tex]\[ \frac{2}{3} \log_{2} 27 = \frac{2}{3} \times 4.754887502163469 \approx 3.1699250014423126 \][/tex]
7. Calculate the final power: Raise 2 to this power:
[tex]\[ 2^{3.1699250014423126} \approx 9.000000000000002 \][/tex]
Thus, the value of [tex]\( 2^{\log_{2\sqrt{2}} 27} \)[/tex] is approximately [tex]\( 9.000000000000002 \)[/tex].
1. Understand the expression: We are given [tex]\( 2^{\log _{2 \sqrt{2}} 27} \)[/tex]. Our goal is to simplify this expression to a real number.
2. Change the base of the logarithm: The logarithm [tex]\(\log_{2\sqrt{2}} 27\)[/tex] can be converted to a base-2 logarithm using the change-of-base formula:
[tex]\[ \log_{2\sqrt{2}} 27 = \frac{\log_{2} 27}{\log_{2} (2\sqrt{2})} \][/tex]
3. Simplify the denominator: Let's simplify [tex]\(\log_{2} (2\sqrt{2})\)[/tex]:
[tex]\[ 2\sqrt{2} = 2 \cdot 2^{1/2} = 2^{1 + 1/2} = 2^{3/2} \][/tex]
Thus,
[tex]\[ \log_{2} (2\sqrt{2}) = \log_{2} (2^{3/2}) = \frac{3}{2} \][/tex]
4. Substitute back into the expression: Now substitute [tex]\(\log_{2} (2\sqrt{2})\)[/tex] back into our change-of-base formula:
[tex]\[ \log_{2\sqrt{2}} 27 = \frac{\log_{2} 27}{3/2} = \frac{2}{3} \log_{2} 27 \][/tex]
5. Simplify the power: Now we need to simplify [tex]\( 2^{\log_{2\sqrt{2}} 27} \)[/tex]:
[tex]\[ 2^{\log_{2\sqrt{2}} 27} = 2^{(\frac{2}{3} \log_{2} 27)} \][/tex]
6. Substitute values: We need the value of [tex]\(\log_{2} 27\)[/tex]. We know it is approximately [tex]\( 4.754887502163469 \)[/tex].
Using this value:
[tex]\[ \frac{2}{3} \log_{2} 27 = \frac{2}{3} \times 4.754887502163469 \approx 3.1699250014423126 \][/tex]
7. Calculate the final power: Raise 2 to this power:
[tex]\[ 2^{3.1699250014423126} \approx 9.000000000000002 \][/tex]
Thus, the value of [tex]\( 2^{\log_{2\sqrt{2}} 27} \)[/tex] is approximately [tex]\( 9.000000000000002 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.