Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

From the following balanced equation,

[tex]\[ 4 NH_3(g) + 5 O_2(g) \longrightarrow 4 NO(g) + 6 H_2O(g) \][/tex]

how many grams of [tex]\[ H_2O \][/tex] can be formed when [tex]\[ 6.12 \, \text{g} \, NH_3 \][/tex] reacts with [tex]\[ 3.78 \, \text{g} \, O_2 \][/tex]?

Select the correct answer below:

A. 9.71 g
B. 3.78 g
C. 6.12 g
D. 2.55 g

Sagot :

To solve the problem of how many grams of [tex]\( H_2O \)[/tex] can be formed when [tex]\( 6.12 \)[/tex] g of [tex]\( NH_3 \)[/tex] reacts with [tex]\( 3.78 \)[/tex] g of [tex]\( O_2 \)[/tex], follow these steps:

1. Calculate the molar masses:
- Molar mass of [tex]\( NH_3 \)[/tex] (Ammonia): [tex]\( 14.01 (\text{N}) + 3 \times 1.01 (\text{H}) = 17.03 \)[/tex] g/mol
- Molar mass of [tex]\( O_2 \)[/tex] (Oxygen): [tex]\( 2 \times 16.00 (\text{O}) = 32.00 \)[/tex] g/mol
- Molar mass of [tex]\( H_2O \)[/tex] (Water): [tex]\( 2 \times 1.01 (\text{H}) + 16.00 (\text{O}) = 18.02 \)[/tex] g/mol

2. Convert given masses to moles:
- Moles of [tex]\( NH_3 \)[/tex]: [tex]\( \frac{6.12 \, \text{g}}{17.03 \, \text{g/mol}} \approx 0.359 \, \text{mol} \)[/tex]
- Moles of [tex]\( O_2 \)[/tex]: [tex]\( \frac{3.78 \, \text{g}}{32.00 \, \text{g/mol}} \approx 0.118 \, \text{mol} \)[/tex]

3. Determine the stoichiometric ratios from the balanced equation:
[tex]\[ 4 \, NH_3 + 5 \, O_2 \rightarrow 4 \, NO + 6 \, H_2O \][/tex]
- According to the equation, 4 moles of [tex]\( NH_3 \)[/tex] produce 6 moles of [tex]\( H_2O \)[/tex].
- According to the equation, 5 moles of [tex]\( O_2 \)[/tex] produce 6 moles of [tex]\( H_2O \)[/tex].

4. Calculate the moles of [tex]\( H_2O \)[/tex] produced by each reactant:
- From [tex]\( NH_3 \)[/tex]: [tex]\( 0.359 \, \text{mol} \, NH_3 \times \frac{6 \, \text{mol} \, H_2O}{4 \, \text{mol} \, NH_3} \approx 0.539 \, \text{mol} \, H_2O \)[/tex]
- From [tex]\( O_2 \)[/tex]: [tex]\( 0.118 \, \text{mol} \, O_2 \times \frac{6 \, \text{mol} \, H_2O}{5 \, \text{mol} \, O_2} \approx 0.141 \, \text{mol} \, H_2O \)[/tex]

5. Identify the limiting reactant:
- The limiting reactant is [tex]\( O_2 \)[/tex] because it produces fewer moles of [tex]\( H_2O \)[/tex].

6. Calculate the mass of [tex]\( H_2O \)[/tex] formed:
- Moles of [tex]\( H_2O \)[/tex] from the limiting reactant: [tex]\( 0.141 \, \text{mol} \)[/tex]
- Mass of [tex]\( H_2O \)[/tex]: [tex]\( 0.141 \, \text{mol} \times 18.02 \, \text{g/mol} \approx 2.55 \, \text{g} \)[/tex]

So, the correct answer is:

[tex]\[ \boxed{2.55 \, \text{g}} \][/tex]