Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To factorize the expression [tex]\( x^2 + 6x + 5 - 4y - y^2 \)[/tex], we need to recognize it in a form where we can apply factoring techniques. Here's how you can do it step by step:
1. Rearrange the Given Expression: Group the terms involving [tex]\( x \)[/tex] and [tex]\( y \)[/tex] together.
[tex]\[ x^2 + 6x + 5 - y^2 - 4y \][/tex]
2. Reorder the Expression for Clarity: Write it as:
[tex]\[ x^2 + 6x + 5 - y^2 - 4y \][/tex]
3. Identify and Factor Quadratic Terms: We can see there are two quadratic expressions here, one in [tex]\( x \)[/tex] and one in [tex]\( y \)[/tex]:
[tex]\[ (x^2 + 6x + 5) - (y^2 + 4y) \][/tex]
4. Complete the Square for Each Quadratic:
- For the quadratic in [tex]\( x \)[/tex]:
[tex]\[ x^2 + 6x + 5 = (x + 3)^2 - 4 \][/tex]
However, directly factoring it, we get:
[tex]\[ x^2 + 6x + 5 = (x + 1)(x + 5) \][/tex]
- For the quadratic in [tex]\( y \)[/tex], to see the usual factor form:
[tex]\[ y^2 + 4y = (y + 2)^2 - 4 \][/tex]
But typically, we know:
[tex]\[ - y^2 - 4y = - (y^2 + 4y + 4 - 4); \][/tex]
Combining, we get:
[tex]\[ - (y + 2 - y); usual factor forms: -(y + 1)(y + 4) \][/tex]
5. Combine Both Expressions via Factoring Sum of two common Statements:
But another Elegant Way:
- Recognize if we can merge overall:
[tex]\[ Simplify and rearrange dynamically the overall addition Common factors like; \;Comparing factor cross form to together start expressions ( x - something -twe y ) Directly merger. Putting these together gives us: The factored form of the given expression is: \[ \boxed{(x - y + 1)(x + y + 5)} \][/tex]
1. Rearrange the Given Expression: Group the terms involving [tex]\( x \)[/tex] and [tex]\( y \)[/tex] together.
[tex]\[ x^2 + 6x + 5 - y^2 - 4y \][/tex]
2. Reorder the Expression for Clarity: Write it as:
[tex]\[ x^2 + 6x + 5 - y^2 - 4y \][/tex]
3. Identify and Factor Quadratic Terms: We can see there are two quadratic expressions here, one in [tex]\( x \)[/tex] and one in [tex]\( y \)[/tex]:
[tex]\[ (x^2 + 6x + 5) - (y^2 + 4y) \][/tex]
4. Complete the Square for Each Quadratic:
- For the quadratic in [tex]\( x \)[/tex]:
[tex]\[ x^2 + 6x + 5 = (x + 3)^2 - 4 \][/tex]
However, directly factoring it, we get:
[tex]\[ x^2 + 6x + 5 = (x + 1)(x + 5) \][/tex]
- For the quadratic in [tex]\( y \)[/tex], to see the usual factor form:
[tex]\[ y^2 + 4y = (y + 2)^2 - 4 \][/tex]
But typically, we know:
[tex]\[ - y^2 - 4y = - (y^2 + 4y + 4 - 4); \][/tex]
Combining, we get:
[tex]\[ - (y + 2 - y); usual factor forms: -(y + 1)(y + 4) \][/tex]
5. Combine Both Expressions via Factoring Sum of two common Statements:
But another Elegant Way:
- Recognize if we can merge overall:
[tex]\[ Simplify and rearrange dynamically the overall addition Common factors like; \;Comparing factor cross form to together start expressions ( x - something -twe y ) Directly merger. Putting these together gives us: The factored form of the given expression is: \[ \boxed{(x - y + 1)(x + y + 5)} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.