Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's solve the problem step by step.
Step 1: Given conditions for the roots
We are provided with the following conditions for the roots [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]:
1. [tex]\(\alpha + \beta = 24\)[/tex]
2. [tex]\(\alpha - \beta = 8\)[/tex]
Step 2: Solve for [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]
To find the values of [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex], we can use the given conditions:
[tex]\[ \alpha + \beta = 24 \][/tex]
[tex]\[ \alpha - \beta = 8 \][/tex]
We can add these two equations to eliminate [tex]\(\beta\)[/tex]:
[tex]\[ (\alpha + \beta) + (\alpha - \beta) = 24 + 8 \][/tex]
[tex]\[ 2\alpha = 32 \][/tex]
[tex]\[ \alpha = 16 \][/tex]
Next, we substitute [tex]\(\alpha = 16\)[/tex] back into the first equation to find [tex]\(\beta\)[/tex]:
[tex]\[ \alpha + \beta = 24 \][/tex]
[tex]\[ 16 + \beta = 24 \][/tex]
[tex]\[ \beta = 24 - 16 \][/tex]
[tex]\[ \beta = 8 \][/tex]
Now we have [tex]\(\alpha = 16\)[/tex] and [tex]\(\beta = 8\)[/tex].
Step 3: Form the quadratic polynomial
The standard form of a quadratic polynomial with roots [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] is:
[tex]\[ P(x) = a(x - \alpha)(x - \beta) \][/tex]
Since we typically use [tex]\(a = 1\)[/tex] for the simplest polynomial, it simplifies to:
[tex]\[ P(x) = (x - \alpha)(x - \beta) \][/tex]
Substitute [tex]\(\alpha = 16\)[/tex] and [tex]\(\beta = 8\)[/tex] into the polynomial:
[tex]\[ P(x) = (x - 16)(x - 8) \][/tex]
Step 4: Expand the polynomial
Let's expand the expression:
[tex]\[ P(x) = (x - 16)(x - 8) \][/tex]
[tex]\[ P(x) = x^2 - 8x - 16x + 128 \][/tex]
[tex]\[ P(x) = x^2 - 24x + 128 \][/tex]
Therefore, the quadratic polynomial with roots [tex]\(\alpha = 16\)[/tex] and [tex]\(\beta = 8\)[/tex] is:
[tex]\[ P(x) = x^2 - 24x + 128 \][/tex]
This is the quadratic polynomial having [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] as its roots.
Step 1: Given conditions for the roots
We are provided with the following conditions for the roots [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]:
1. [tex]\(\alpha + \beta = 24\)[/tex]
2. [tex]\(\alpha - \beta = 8\)[/tex]
Step 2: Solve for [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]
To find the values of [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex], we can use the given conditions:
[tex]\[ \alpha + \beta = 24 \][/tex]
[tex]\[ \alpha - \beta = 8 \][/tex]
We can add these two equations to eliminate [tex]\(\beta\)[/tex]:
[tex]\[ (\alpha + \beta) + (\alpha - \beta) = 24 + 8 \][/tex]
[tex]\[ 2\alpha = 32 \][/tex]
[tex]\[ \alpha = 16 \][/tex]
Next, we substitute [tex]\(\alpha = 16\)[/tex] back into the first equation to find [tex]\(\beta\)[/tex]:
[tex]\[ \alpha + \beta = 24 \][/tex]
[tex]\[ 16 + \beta = 24 \][/tex]
[tex]\[ \beta = 24 - 16 \][/tex]
[tex]\[ \beta = 8 \][/tex]
Now we have [tex]\(\alpha = 16\)[/tex] and [tex]\(\beta = 8\)[/tex].
Step 3: Form the quadratic polynomial
The standard form of a quadratic polynomial with roots [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] is:
[tex]\[ P(x) = a(x - \alpha)(x - \beta) \][/tex]
Since we typically use [tex]\(a = 1\)[/tex] for the simplest polynomial, it simplifies to:
[tex]\[ P(x) = (x - \alpha)(x - \beta) \][/tex]
Substitute [tex]\(\alpha = 16\)[/tex] and [tex]\(\beta = 8\)[/tex] into the polynomial:
[tex]\[ P(x) = (x - 16)(x - 8) \][/tex]
Step 4: Expand the polynomial
Let's expand the expression:
[tex]\[ P(x) = (x - 16)(x - 8) \][/tex]
[tex]\[ P(x) = x^2 - 8x - 16x + 128 \][/tex]
[tex]\[ P(x) = x^2 - 24x + 128 \][/tex]
Therefore, the quadratic polynomial with roots [tex]\(\alpha = 16\)[/tex] and [tex]\(\beta = 8\)[/tex] is:
[tex]\[ P(x) = x^2 - 24x + 128 \][/tex]
This is the quadratic polynomial having [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex] as its roots.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.