Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve for angle [tex]\( A \)[/tex] using the Law of Sines, we can follow these steps:
1. Identify the given values:
- Distance from Team A to the chest ([tex]\(a\)[/tex]): [tex]\(2.4\)[/tex] meters
- Distance from Team B to the chest ([tex]\(b\)[/tex]): [tex]\(3.2\)[/tex] meters
- Distance between the teams ([tex]\(c\)[/tex]): [tex]\(4.6\)[/tex] meters
- Angle opposite to side [tex]\(c\)[/tex]: [tex]\(\angle C = 110^\circ\)[/tex]
2. Write the Law of Sines formula:
The Law of Sines states that:
[tex]\[ \frac{\sin (A)}{a} = \frac{\sin (B)}{b} = \frac{\sin (C)}{c} \][/tex]
3. Substitute the given values into the Law of Sines:
We need to find an equation that helps us solve for angle [tex]\( A \)[/tex]. Given the side [tex]\(a\)[/tex] and the angle [tex]\(C\)[/tex] opposite to side [tex]\(c\)[/tex], we get:
[tex]\[ \frac{\sin (A)}{2.4} = \frac{\sin (110^\circ)}{4.6} \][/tex]
4. Conclude with the correct equation:
The correct equation to use for solving angle [tex]\( A \)[/tex] is:
[tex]\[ \frac{\sin (A)}{2.4} = \frac{\sin (110^\circ)}{4.6} \][/tex]
Therefore, the equation that can be used to solve for angle [tex]\( A \)[/tex] is:
[tex]\[ \boxed{\frac{\sin (A)}{2.4} = \frac{\sin (110^\circ)}{4.6}} \][/tex]
1. Identify the given values:
- Distance from Team A to the chest ([tex]\(a\)[/tex]): [tex]\(2.4\)[/tex] meters
- Distance from Team B to the chest ([tex]\(b\)[/tex]): [tex]\(3.2\)[/tex] meters
- Distance between the teams ([tex]\(c\)[/tex]): [tex]\(4.6\)[/tex] meters
- Angle opposite to side [tex]\(c\)[/tex]: [tex]\(\angle C = 110^\circ\)[/tex]
2. Write the Law of Sines formula:
The Law of Sines states that:
[tex]\[ \frac{\sin (A)}{a} = \frac{\sin (B)}{b} = \frac{\sin (C)}{c} \][/tex]
3. Substitute the given values into the Law of Sines:
We need to find an equation that helps us solve for angle [tex]\( A \)[/tex]. Given the side [tex]\(a\)[/tex] and the angle [tex]\(C\)[/tex] opposite to side [tex]\(c\)[/tex], we get:
[tex]\[ \frac{\sin (A)}{2.4} = \frac{\sin (110^\circ)}{4.6} \][/tex]
4. Conclude with the correct equation:
The correct equation to use for solving angle [tex]\( A \)[/tex] is:
[tex]\[ \frac{\sin (A)}{2.4} = \frac{\sin (110^\circ)}{4.6} \][/tex]
Therefore, the equation that can be used to solve for angle [tex]\( A \)[/tex] is:
[tex]\[ \boxed{\frac{\sin (A)}{2.4} = \frac{\sin (110^\circ)}{4.6}} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.