Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine both the vector equation and the Cartesian equation of the plane containing the given vectors and point, we go through the following steps:
### Step-by-Step Solution:
1. Define the Given Variables:
- Two vectors in the plane: [tex]\( \mathbf{v_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \)[/tex] and [tex]\( \mathbf{v_2} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} \)[/tex].
- A point on the plane: [tex]\( A(1, 2, 0) \)[/tex].
2. Find the Normal Vector to the Plane:
To find the normal vector to the plane, we compute the cross product of the given vectors [tex]\( \mathbf{v_1} \)[/tex] and [tex]\( \mathbf{v_2} \)[/tex].
[tex]\[ \mathbf{n} = \mathbf{v_1} \times \mathbf{v_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ 3 & 0 & -1 \end{vmatrix} = \mathbf{i} \left( 1 \cdot (-1) - 1 \cdot 0 \right) - \mathbf{j} \left( 2 \cdot (-1) - 1 \cdot 3 \right) + \mathbf{k} \left( 2 \cdot 0 - 1 \cdot 3 \right) \][/tex]
[tex]\[ = \mathbf{i}(-1) - \mathbf{j}(-2 - 3) + \mathbf{k}(0 - 3) \][/tex]
[tex]\[ = -\mathbf{i} + 5\mathbf{j} - 3\mathbf{k} \][/tex]
Thus, the normal vector is [tex]\( \mathbf{n} = \begin{pmatrix} -1 \\ 5 \\ -3 \end{pmatrix} \)[/tex].
3. Vector Equation of the Plane:
The vector equation of the plane can be represented with a normal vector [tex]\(\mathbf{n}\)[/tex] and a point [tex]\( A(1, 2, 0) \)[/tex] on the plane:
[tex]\[ \mathbf{n} \cdot \left(\mathbf{r} - \mathbf{r_0}\right) = 0 \][/tex]
where [tex]\(\mathbf{r}\)[/tex] is any point on the plane, and [tex]\(\mathbf{r_0} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}\)[/tex] is the given point. Thus, the vector equation is:
[tex]\[ \begin{pmatrix} -1 \\ 5 \\ -3 \end{pmatrix} \cdot \left( \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right) = 0 \][/tex]
4. Simplify to Cartesian Equation:
Expand the dot product:
[tex]\[ \begin{pmatrix} -1 \\ 5 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} x - 1 \\ y - 2 \\ z - 0 \end{pmatrix} = 0 \][/tex]
[tex]\[ -1(x - 1) + 5(y - 2) - 3z = 0 \][/tex]
Simplify:
[tex]\[ -x + 1 + 5y - 10 - 3z = 0 \][/tex]
[tex]\[ -x + 5y - 3z - 9 = 0 \][/tex]
[tex]\[ -x + 5y - 3z = 9 \][/tex]
Hence, the Cartesian equation of the plane is:
[tex]\[ -1x + 5y + -3z + -9 = 0 \][/tex]
And in a cleaner format:
[tex]\[ -x + 5y - 3z - 9 = 0 \][/tex]
The final results are:
- Vector equation of the plane:
[tex]\[ \begin{pmatrix} -1 \\ 5 \\ -3 \end{pmatrix} \cdot \left( \mathbf{r} - \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right) = 0 \][/tex]
- Cartesian equation of the plane:
[tex]\[ -x + 5y - 3z - 9 = 0 \][/tex]
### Step-by-Step Solution:
1. Define the Given Variables:
- Two vectors in the plane: [tex]\( \mathbf{v_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \)[/tex] and [tex]\( \mathbf{v_2} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} \)[/tex].
- A point on the plane: [tex]\( A(1, 2, 0) \)[/tex].
2. Find the Normal Vector to the Plane:
To find the normal vector to the plane, we compute the cross product of the given vectors [tex]\( \mathbf{v_1} \)[/tex] and [tex]\( \mathbf{v_2} \)[/tex].
[tex]\[ \mathbf{n} = \mathbf{v_1} \times \mathbf{v_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ 3 & 0 & -1 \end{vmatrix} = \mathbf{i} \left( 1 \cdot (-1) - 1 \cdot 0 \right) - \mathbf{j} \left( 2 \cdot (-1) - 1 \cdot 3 \right) + \mathbf{k} \left( 2 \cdot 0 - 1 \cdot 3 \right) \][/tex]
[tex]\[ = \mathbf{i}(-1) - \mathbf{j}(-2 - 3) + \mathbf{k}(0 - 3) \][/tex]
[tex]\[ = -\mathbf{i} + 5\mathbf{j} - 3\mathbf{k} \][/tex]
Thus, the normal vector is [tex]\( \mathbf{n} = \begin{pmatrix} -1 \\ 5 \\ -3 \end{pmatrix} \)[/tex].
3. Vector Equation of the Plane:
The vector equation of the plane can be represented with a normal vector [tex]\(\mathbf{n}\)[/tex] and a point [tex]\( A(1, 2, 0) \)[/tex] on the plane:
[tex]\[ \mathbf{n} \cdot \left(\mathbf{r} - \mathbf{r_0}\right) = 0 \][/tex]
where [tex]\(\mathbf{r}\)[/tex] is any point on the plane, and [tex]\(\mathbf{r_0} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}\)[/tex] is the given point. Thus, the vector equation is:
[tex]\[ \begin{pmatrix} -1 \\ 5 \\ -3 \end{pmatrix} \cdot \left( \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right) = 0 \][/tex]
4. Simplify to Cartesian Equation:
Expand the dot product:
[tex]\[ \begin{pmatrix} -1 \\ 5 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} x - 1 \\ y - 2 \\ z - 0 \end{pmatrix} = 0 \][/tex]
[tex]\[ -1(x - 1) + 5(y - 2) - 3z = 0 \][/tex]
Simplify:
[tex]\[ -x + 1 + 5y - 10 - 3z = 0 \][/tex]
[tex]\[ -x + 5y - 3z - 9 = 0 \][/tex]
[tex]\[ -x + 5y - 3z = 9 \][/tex]
Hence, the Cartesian equation of the plane is:
[tex]\[ -1x + 5y + -3z + -9 = 0 \][/tex]
And in a cleaner format:
[tex]\[ -x + 5y - 3z - 9 = 0 \][/tex]
The final results are:
- Vector equation of the plane:
[tex]\[ \begin{pmatrix} -1 \\ 5 \\ -3 \end{pmatrix} \cdot \left( \mathbf{r} - \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right) = 0 \][/tex]
- Cartesian equation of the plane:
[tex]\[ -x + 5y - 3z - 9 = 0 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.