Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine whether the function [tex]\( f(x) = 3x^2 \)[/tex] is even or odd, we will use the definitions of even and odd functions.
1. Evaluating [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = 3(-x)^2 \][/tex]
Since [tex]\((-x)^2 = x^2\)[/tex], we have:
[tex]\[ f(-x) = 3x^2 \][/tex]
2. Checking the conditions for even and odd functions:
- A function is even if [tex]\( f(-x) = f(x) \)[/tex].
- A function is odd if [tex]\( f(-x) = -f(x) \)[/tex].
3. Comparing [tex]\( f(-x) \)[/tex] and [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 3x^2 \][/tex]
[tex]\[ f(-x) = 3x^2 \][/tex]
Since [tex]\( f(-x) = 3x^2 \)[/tex] and [tex]\( f(x) = 3x^2 \)[/tex], we have:
[tex]\[ f(-x) = f(x) \][/tex]
Thus, the function [tex]\( f(x) = 3x^2 \)[/tex] satisfies the condition for being an even function.
Conclusion:
- The function [tex]\( f(x) = 3x^2 \)[/tex] is even because [tex]\( f(-x) = f(x) \)[/tex].
So, the correct statement is:
- The function is even because [tex]\( f(-x) = f(x) \)[/tex].
1. Evaluating [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = 3(-x)^2 \][/tex]
Since [tex]\((-x)^2 = x^2\)[/tex], we have:
[tex]\[ f(-x) = 3x^2 \][/tex]
2. Checking the conditions for even and odd functions:
- A function is even if [tex]\( f(-x) = f(x) \)[/tex].
- A function is odd if [tex]\( f(-x) = -f(x) \)[/tex].
3. Comparing [tex]\( f(-x) \)[/tex] and [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = 3x^2 \][/tex]
[tex]\[ f(-x) = 3x^2 \][/tex]
Since [tex]\( f(-x) = 3x^2 \)[/tex] and [tex]\( f(x) = 3x^2 \)[/tex], we have:
[tex]\[ f(-x) = f(x) \][/tex]
Thus, the function [tex]\( f(x) = 3x^2 \)[/tex] satisfies the condition for being an even function.
Conclusion:
- The function [tex]\( f(x) = 3x^2 \)[/tex] is even because [tex]\( f(-x) = f(x) \)[/tex].
So, the correct statement is:
- The function is even because [tex]\( f(-x) = f(x) \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.