Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the choices is equivalent to [tex]\(\sum_{k=0}^5 a_k\)[/tex], let's break down the summation symbol [tex]\(\sum_{k=0}^5 a_k\)[/tex]:
The summation symbol [tex]\(\sum_{k=0}^5 a_k\)[/tex] tells us to sum the terms [tex]\(a_k\)[/tex] starting from [tex]\(k=0\)[/tex] and continuing up to [tex]\(k=5\)[/tex]. This means:
[tex]\[ \sum_{k=0}^5 a_k = a_0 + a_1 + a_2 + a_3 + a_4 + a_5 \][/tex]
Now, let's analyze each choice:
A) [tex]\(a_0 + a_1 + a_2 + \ldots\)[/tex]
This suggests an ongoing sum that starts at [tex]\(a_0\)[/tex] but does not specify an end. It implies the sum continues indefinitely, which is not what [tex]\(\sum_{k=0}^5 a_k\)[/tex] represents.
B) [tex]\(a_1 + a_2 + a_3 + \ldots + a_{\infty}\)[/tex]
This starts at [tex]\(a_1\)[/tex] and continues indefinitely, essentially implying an infinite sum starting from [tex]\(a_1\)[/tex], which again is not what [tex]\(\sum_{k=0}^5 a_k\)[/tex] represents.
C) [tex]\(a_0 + a_1 + a_2 + a_3 + a_4 + a_5\)[/tex]
This matches exactly what we expanded from [tex]\(\sum_{k=0}^5 a_k\)[/tex]. It includes each term from [tex]\(a_0\)[/tex] to [tex]\(a_5\)[/tex].
D) [tex]\(a_1 + a_2 + a_3 + a_4 + a_5\)[/tex]
This starts from [tex]\(a_1\)[/tex] and goes up to [tex]\(a_5\)[/tex], thereby missing the [tex]\(a_0\)[/tex] term. Hence, it doesn't match [tex]\(\sum_{k=0}^5 a_k\)[/tex].
Therefore, the correct choice that matches [tex]\(\sum_{k=0}^5 a_k\)[/tex] is:
C) [tex]\(a_0 + a_1 + a_2 + a_3 + a_4 + a_5\)[/tex]
The summation symbol [tex]\(\sum_{k=0}^5 a_k\)[/tex] tells us to sum the terms [tex]\(a_k\)[/tex] starting from [tex]\(k=0\)[/tex] and continuing up to [tex]\(k=5\)[/tex]. This means:
[tex]\[ \sum_{k=0}^5 a_k = a_0 + a_1 + a_2 + a_3 + a_4 + a_5 \][/tex]
Now, let's analyze each choice:
A) [tex]\(a_0 + a_1 + a_2 + \ldots\)[/tex]
This suggests an ongoing sum that starts at [tex]\(a_0\)[/tex] but does not specify an end. It implies the sum continues indefinitely, which is not what [tex]\(\sum_{k=0}^5 a_k\)[/tex] represents.
B) [tex]\(a_1 + a_2 + a_3 + \ldots + a_{\infty}\)[/tex]
This starts at [tex]\(a_1\)[/tex] and continues indefinitely, essentially implying an infinite sum starting from [tex]\(a_1\)[/tex], which again is not what [tex]\(\sum_{k=0}^5 a_k\)[/tex] represents.
C) [tex]\(a_0 + a_1 + a_2 + a_3 + a_4 + a_5\)[/tex]
This matches exactly what we expanded from [tex]\(\sum_{k=0}^5 a_k\)[/tex]. It includes each term from [tex]\(a_0\)[/tex] to [tex]\(a_5\)[/tex].
D) [tex]\(a_1 + a_2 + a_3 + a_4 + a_5\)[/tex]
This starts from [tex]\(a_1\)[/tex] and goes up to [tex]\(a_5\)[/tex], thereby missing the [tex]\(a_0\)[/tex] term. Hence, it doesn't match [tex]\(\sum_{k=0}^5 a_k\)[/tex].
Therefore, the correct choice that matches [tex]\(\sum_{k=0}^5 a_k\)[/tex] is:
C) [tex]\(a_0 + a_1 + a_2 + a_3 + a_4 + a_5\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.