Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the length of one leg of a 45°-45°-90° triangle when the hypotenuse is given, follow these steps:
1. Understand the properties of a 45°-45°-90° triangle:
- In a 45°-45°-90° triangle, the legs are congruent (equal in length).
- The relationship between the legs and the hypotenuse is expressed using the formula:
[tex]\[ \text{hypotenuse} = \text{leg} \times \sqrt{2} \][/tex]
2. Given information:
- Hypotenuse = [tex]\( 22\sqrt{2} \)[/tex] units
3. Set up the equation based on the triangle properties:
- Let [tex]\( l \)[/tex] be the length of one leg.
- According to the properties, we have:
[tex]\[ \text{hypotenuse} = l \times \sqrt{2} \][/tex]
- Substitute the given hypotenuse into the equation:
[tex]\[ 22\sqrt{2} = l \times \sqrt{2} \][/tex]
4. Solve for [tex]\( l \)[/tex]:
- To isolate [tex]\( l \)[/tex], divide both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ l = \frac{22\sqrt{2}}{\sqrt{2}} \][/tex]
- Simplifying the expression on the right-hand side:
[tex]\[ l = 22 \][/tex]
Thus, the length of one leg of the triangle is [tex]\( 22 \)[/tex] units. This matches the option "22 units."
1. Understand the properties of a 45°-45°-90° triangle:
- In a 45°-45°-90° triangle, the legs are congruent (equal in length).
- The relationship between the legs and the hypotenuse is expressed using the formula:
[tex]\[ \text{hypotenuse} = \text{leg} \times \sqrt{2} \][/tex]
2. Given information:
- Hypotenuse = [tex]\( 22\sqrt{2} \)[/tex] units
3. Set up the equation based on the triangle properties:
- Let [tex]\( l \)[/tex] be the length of one leg.
- According to the properties, we have:
[tex]\[ \text{hypotenuse} = l \times \sqrt{2} \][/tex]
- Substitute the given hypotenuse into the equation:
[tex]\[ 22\sqrt{2} = l \times \sqrt{2} \][/tex]
4. Solve for [tex]\( l \)[/tex]:
- To isolate [tex]\( l \)[/tex], divide both sides of the equation by [tex]\( \sqrt{2} \)[/tex]:
[tex]\[ l = \frac{22\sqrt{2}}{\sqrt{2}} \][/tex]
- Simplifying the expression on the right-hand side:
[tex]\[ l = 22 \][/tex]
Thus, the length of one leg of the triangle is [tex]\( 22 \)[/tex] units. This matches the option "22 units."
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.