Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equation of the line that passes through the point [tex]\((4, 5)\)[/tex] and is parallel to the line [tex]\(y = -2x - 2\)[/tex], follow these steps:
1. Identify the slope of the given line:
- The general form of the slope-intercept equation of a line is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
- From the line equation [tex]\(y = -2x - 2\)[/tex], we see that the slope [tex]\(m\)[/tex] is [tex]\(-2\)[/tex]. Thus, any line parallel to this line will also have a slope of [tex]\(-2\)[/tex].
2. Plug in the slope and the coordinates of the given point into the slope-intercept form:
- The slope-intercept form of the equation of a line is [tex]\(y = mx + b\)[/tex].
- We will use the given point [tex]\((4, 5)\)[/tex] to find the y-intercept [tex]\(b\)[/tex].
- Substitute [tex]\(x = 4\)[/tex], [tex]\(y = 5\)[/tex], and [tex]\(m = -2\)[/tex] into the equation:
[tex]\[ 5 = -2(4) + b \][/tex]
3. Solve for the y-intercept [tex]\(b\)[/tex]:
[tex]\[ 5 = -2 \cdot 4 + b \][/tex]
[tex]\[ 5 = -8 + b \][/tex]
[tex]\[ b = 5 + 8 \][/tex]
[tex]\[ b = 13 \][/tex]
4. Write the equation in slope-intercept form:
- Now that we know the slope is [tex]\(-2\)[/tex] and the y-intercept is [tex]\(13\)[/tex], we can write the equation of the line:
[tex]\[ y = -2x + 13 \][/tex]
Thus, the equation of the line that passes through the point [tex]\((4, 5)\)[/tex] and is parallel to the line [tex]\(y = -2x - 2\)[/tex] is [tex]\(y = -2x + 13\)[/tex].
1. Identify the slope of the given line:
- The general form of the slope-intercept equation of a line is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
- From the line equation [tex]\(y = -2x - 2\)[/tex], we see that the slope [tex]\(m\)[/tex] is [tex]\(-2\)[/tex]. Thus, any line parallel to this line will also have a slope of [tex]\(-2\)[/tex].
2. Plug in the slope and the coordinates of the given point into the slope-intercept form:
- The slope-intercept form of the equation of a line is [tex]\(y = mx + b\)[/tex].
- We will use the given point [tex]\((4, 5)\)[/tex] to find the y-intercept [tex]\(b\)[/tex].
- Substitute [tex]\(x = 4\)[/tex], [tex]\(y = 5\)[/tex], and [tex]\(m = -2\)[/tex] into the equation:
[tex]\[ 5 = -2(4) + b \][/tex]
3. Solve for the y-intercept [tex]\(b\)[/tex]:
[tex]\[ 5 = -2 \cdot 4 + b \][/tex]
[tex]\[ 5 = -8 + b \][/tex]
[tex]\[ b = 5 + 8 \][/tex]
[tex]\[ b = 13 \][/tex]
4. Write the equation in slope-intercept form:
- Now that we know the slope is [tex]\(-2\)[/tex] and the y-intercept is [tex]\(13\)[/tex], we can write the equation of the line:
[tex]\[ y = -2x + 13 \][/tex]
Thus, the equation of the line that passes through the point [tex]\((4, 5)\)[/tex] and is parallel to the line [tex]\(y = -2x - 2\)[/tex] is [tex]\(y = -2x + 13\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.