Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the equation of the line that passes through the point [tex]\((4, 5)\)[/tex] and is parallel to the line [tex]\(y = -2x - 2\)[/tex], follow these steps:
1. Identify the slope of the given line:
- The general form of the slope-intercept equation of a line is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
- From the line equation [tex]\(y = -2x - 2\)[/tex], we see that the slope [tex]\(m\)[/tex] is [tex]\(-2\)[/tex]. Thus, any line parallel to this line will also have a slope of [tex]\(-2\)[/tex].
2. Plug in the slope and the coordinates of the given point into the slope-intercept form:
- The slope-intercept form of the equation of a line is [tex]\(y = mx + b\)[/tex].
- We will use the given point [tex]\((4, 5)\)[/tex] to find the y-intercept [tex]\(b\)[/tex].
- Substitute [tex]\(x = 4\)[/tex], [tex]\(y = 5\)[/tex], and [tex]\(m = -2\)[/tex] into the equation:
[tex]\[ 5 = -2(4) + b \][/tex]
3. Solve for the y-intercept [tex]\(b\)[/tex]:
[tex]\[ 5 = -2 \cdot 4 + b \][/tex]
[tex]\[ 5 = -8 + b \][/tex]
[tex]\[ b = 5 + 8 \][/tex]
[tex]\[ b = 13 \][/tex]
4. Write the equation in slope-intercept form:
- Now that we know the slope is [tex]\(-2\)[/tex] and the y-intercept is [tex]\(13\)[/tex], we can write the equation of the line:
[tex]\[ y = -2x + 13 \][/tex]
Thus, the equation of the line that passes through the point [tex]\((4, 5)\)[/tex] and is parallel to the line [tex]\(y = -2x - 2\)[/tex] is [tex]\(y = -2x + 13\)[/tex].
1. Identify the slope of the given line:
- The general form of the slope-intercept equation of a line is [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
- From the line equation [tex]\(y = -2x - 2\)[/tex], we see that the slope [tex]\(m\)[/tex] is [tex]\(-2\)[/tex]. Thus, any line parallel to this line will also have a slope of [tex]\(-2\)[/tex].
2. Plug in the slope and the coordinates of the given point into the slope-intercept form:
- The slope-intercept form of the equation of a line is [tex]\(y = mx + b\)[/tex].
- We will use the given point [tex]\((4, 5)\)[/tex] to find the y-intercept [tex]\(b\)[/tex].
- Substitute [tex]\(x = 4\)[/tex], [tex]\(y = 5\)[/tex], and [tex]\(m = -2\)[/tex] into the equation:
[tex]\[ 5 = -2(4) + b \][/tex]
3. Solve for the y-intercept [tex]\(b\)[/tex]:
[tex]\[ 5 = -2 \cdot 4 + b \][/tex]
[tex]\[ 5 = -8 + b \][/tex]
[tex]\[ b = 5 + 8 \][/tex]
[tex]\[ b = 13 \][/tex]
4. Write the equation in slope-intercept form:
- Now that we know the slope is [tex]\(-2\)[/tex] and the y-intercept is [tex]\(13\)[/tex], we can write the equation of the line:
[tex]\[ y = -2x + 13 \][/tex]
Thus, the equation of the line that passes through the point [tex]\((4, 5)\)[/tex] and is parallel to the line [tex]\(y = -2x - 2\)[/tex] is [tex]\(y = -2x + 13\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.