Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the length of one leg of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle with a hypotenuse of 4 cm, we use the properties of this special type of triangle.
In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the two legs are of equal length, and each leg is related to the hypotenuse by a specific ratio. The length of each leg can be found using the following relationship:
[tex]\[ \text{Leg length} = \frac{\text{Hypotenuse}}{\sqrt{2}} \][/tex]
Given the hypotenuse is 4 cm, we can substitute this value into the formula:
[tex]\[ \text{Leg length} = \frac{4 \, \text{cm}}{\sqrt{2}} \][/tex]
To simplify, we rationalize the denominator:
[tex]\[ \frac{4 \, \text{cm}}{\sqrt{2}} = \frac{4 \, \text{cm} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{4 \sqrt{2} \, \text{cm}}{2} = 2 \sqrt{2} \, \text{cm} \][/tex]
Therefore, the length of one leg of the triangle is [tex]\(2 \sqrt{2} \, \text{cm}\)[/tex].
So among the given options:
1. 2 cm
2. [tex]\(2 \sqrt{2} \, \text{cm}\)[/tex]
3. 4 cm
4. [tex]\(4 \sqrt{2} \, \text{cm}\)[/tex]
The correct answer is:
[tex]\[ 2 \sqrt{2} \, \text{cm} \][/tex]
In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the two legs are of equal length, and each leg is related to the hypotenuse by a specific ratio. The length of each leg can be found using the following relationship:
[tex]\[ \text{Leg length} = \frac{\text{Hypotenuse}}{\sqrt{2}} \][/tex]
Given the hypotenuse is 4 cm, we can substitute this value into the formula:
[tex]\[ \text{Leg length} = \frac{4 \, \text{cm}}{\sqrt{2}} \][/tex]
To simplify, we rationalize the denominator:
[tex]\[ \frac{4 \, \text{cm}}{\sqrt{2}} = \frac{4 \, \text{cm} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{4 \sqrt{2} \, \text{cm}}{2} = 2 \sqrt{2} \, \text{cm} \][/tex]
Therefore, the length of one leg of the triangle is [tex]\(2 \sqrt{2} \, \text{cm}\)[/tex].
So among the given options:
1. 2 cm
2. [tex]\(2 \sqrt{2} \, \text{cm}\)[/tex]
3. 4 cm
4. [tex]\(4 \sqrt{2} \, \text{cm}\)[/tex]
The correct answer is:
[tex]\[ 2 \sqrt{2} \, \text{cm} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.