Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the length of one leg of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle with a hypotenuse of 4 cm, we use the properties of this special type of triangle.
In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the two legs are of equal length, and each leg is related to the hypotenuse by a specific ratio. The length of each leg can be found using the following relationship:
[tex]\[ \text{Leg length} = \frac{\text{Hypotenuse}}{\sqrt{2}} \][/tex]
Given the hypotenuse is 4 cm, we can substitute this value into the formula:
[tex]\[ \text{Leg length} = \frac{4 \, \text{cm}}{\sqrt{2}} \][/tex]
To simplify, we rationalize the denominator:
[tex]\[ \frac{4 \, \text{cm}}{\sqrt{2}} = \frac{4 \, \text{cm} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{4 \sqrt{2} \, \text{cm}}{2} = 2 \sqrt{2} \, \text{cm} \][/tex]
Therefore, the length of one leg of the triangle is [tex]\(2 \sqrt{2} \, \text{cm}\)[/tex].
So among the given options:
1. 2 cm
2. [tex]\(2 \sqrt{2} \, \text{cm}\)[/tex]
3. 4 cm
4. [tex]\(4 \sqrt{2} \, \text{cm}\)[/tex]
The correct answer is:
[tex]\[ 2 \sqrt{2} \, \text{cm} \][/tex]
In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the two legs are of equal length, and each leg is related to the hypotenuse by a specific ratio. The length of each leg can be found using the following relationship:
[tex]\[ \text{Leg length} = \frac{\text{Hypotenuse}}{\sqrt{2}} \][/tex]
Given the hypotenuse is 4 cm, we can substitute this value into the formula:
[tex]\[ \text{Leg length} = \frac{4 \, \text{cm}}{\sqrt{2}} \][/tex]
To simplify, we rationalize the denominator:
[tex]\[ \frac{4 \, \text{cm}}{\sqrt{2}} = \frac{4 \, \text{cm} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{4 \sqrt{2} \, \text{cm}}{2} = 2 \sqrt{2} \, \text{cm} \][/tex]
Therefore, the length of one leg of the triangle is [tex]\(2 \sqrt{2} \, \text{cm}\)[/tex].
So among the given options:
1. 2 cm
2. [tex]\(2 \sqrt{2} \, \text{cm}\)[/tex]
3. 4 cm
4. [tex]\(4 \sqrt{2} \, \text{cm}\)[/tex]
The correct answer is:
[tex]\[ 2 \sqrt{2} \, \text{cm} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.