At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the length of the hypotenuse of [tex]\(\triangle XYZ\)[/tex], given that it is similar to [tex]\(\triangle ABC\)[/tex], we can use the properties of similar triangles.
1. Step 1: Calculate the hypotenuse of [tex]\(\triangle ABC\)[/tex]
[tex]\(\triangle ABC\)[/tex] has legs of lengths 9 ft and 12 ft. To find the hypotenuse, we use the Pythagorean theorem:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Plugging in the values for the legs:
[tex]\[ 9^2 + 12^2 = c^2 \][/tex]
[tex]\[ 81 + 144 = c^2 \][/tex]
[tex]\[ 225 = c^2 \][/tex]
[tex]\[ c = \sqrt{225} = 15 \, \text{ft} \][/tex]
So, the hypotenuse of [tex]\(\triangle ABC\)[/tex] is 15 ft.
2. Step 2: Determine the ratio of the sides of similar triangles
Since [tex]\(\triangle ABC \sim \triangle XYZ\)[/tex], the ratios of corresponding sides are equal. The shortest side of [tex]\(\triangle ABC\)[/tex] is 9 ft, and the shortest side of [tex]\(\triangle XYZ\)[/tex] is 13.5 ft. Thus, the ratio of the sides is:
[tex]\[ \frac{13.5}{9} = 1.5 \][/tex]
3. Step 3: Calculate the hypotenuse of [tex]\(\triangle XYZ\)[/tex] using the ratio
Given that the triangles are similar, the ratio of the hypotenuse of [tex]\(\triangle XYZ\)[/tex] to the hypotenuse of [tex]\(\triangle ABC\)[/tex] should also be 1.5. Therefore, we multiply the hypotenuse of [tex]\(\triangle ABC\)[/tex] by this ratio:
[tex]\[ \text{Hypotenuse of } \triangle XYZ = 15 \times 1.5 = 22.5 \, \text{ft} \][/tex]
4. Step 4: Select the best answer from the choices provided
From the given options,
A. 15 ft
B. 18 ft
C. 22.5 ft
D. 27.5 ft
The correct answer is:
C. 22.5 ft
So the hypotenuse of [tex]\(\triangle XYZ\)[/tex] is 22.5 ft.
1. Step 1: Calculate the hypotenuse of [tex]\(\triangle ABC\)[/tex]
[tex]\(\triangle ABC\)[/tex] has legs of lengths 9 ft and 12 ft. To find the hypotenuse, we use the Pythagorean theorem:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
Plugging in the values for the legs:
[tex]\[ 9^2 + 12^2 = c^2 \][/tex]
[tex]\[ 81 + 144 = c^2 \][/tex]
[tex]\[ 225 = c^2 \][/tex]
[tex]\[ c = \sqrt{225} = 15 \, \text{ft} \][/tex]
So, the hypotenuse of [tex]\(\triangle ABC\)[/tex] is 15 ft.
2. Step 2: Determine the ratio of the sides of similar triangles
Since [tex]\(\triangle ABC \sim \triangle XYZ\)[/tex], the ratios of corresponding sides are equal. The shortest side of [tex]\(\triangle ABC\)[/tex] is 9 ft, and the shortest side of [tex]\(\triangle XYZ\)[/tex] is 13.5 ft. Thus, the ratio of the sides is:
[tex]\[ \frac{13.5}{9} = 1.5 \][/tex]
3. Step 3: Calculate the hypotenuse of [tex]\(\triangle XYZ\)[/tex] using the ratio
Given that the triangles are similar, the ratio of the hypotenuse of [tex]\(\triangle XYZ\)[/tex] to the hypotenuse of [tex]\(\triangle ABC\)[/tex] should also be 1.5. Therefore, we multiply the hypotenuse of [tex]\(\triangle ABC\)[/tex] by this ratio:
[tex]\[ \text{Hypotenuse of } \triangle XYZ = 15 \times 1.5 = 22.5 \, \text{ft} \][/tex]
4. Step 4: Select the best answer from the choices provided
From the given options,
A. 15 ft
B. 18 ft
C. 22.5 ft
D. 27.5 ft
The correct answer is:
C. 22.5 ft
So the hypotenuse of [tex]\(\triangle XYZ\)[/tex] is 22.5 ft.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.