Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Given the sequence [tex]\(13, 27, 41, 55, \ldots\)[/tex], we want to identify the rule that represents this sequence.
1. First, observe the sequence: [tex]\(13, 27, 41, 55, \ldots\)[/tex].
2. Determine the first differences between consecutive terms in the sequence:
[tex]\[ 27 - 13 = 14 \][/tex]
[tex]\[ 41 - 27 = 14 \][/tex]
[tex]\[ 55 - 41 = 14 \][/tex]
The differences between consecutive terms are constant and equal to [tex]\(14\)[/tex]. Therefore, this sequence is an arithmetic sequence with a common difference ([tex]\(d\)[/tex]) of [tex]\(14\)[/tex].
3. To find the general rule for the [tex]\(n\)[/tex]-th term of an arithmetic sequence, we use the formula:
[tex]\[ a_n = a_1 + (n - 1)d \][/tex]
Where:
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term,
- [tex]\(a_1\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the term number.
4. Substitute the known values into the formula:
- The first term [tex]\(a_1 = 13\)[/tex],
- The common difference [tex]\(d = 14\)[/tex].
The formula becomes:
[tex]\[ a_n = 13 + (n - 1) \cdot 14 \][/tex]
5. Simplify the expression:
[tex]\[ a_n = 13 + 14(n - 1) \][/tex]
[tex]\[ a_n = 13 + 14n - 14 \][/tex]
[tex]\[ a_n = 14n - 1 \][/tex]
6. From the provided options:
- Option A) [tex]\( a_n = 13 + 14(n - 1) \)[/tex],
- Option B) [tex]\( a_n = 13 - 14(n - 1) \)[/tex].
Option A matches our derived rule.
Therefore, the correct answer is:
\[ \boxed{A} \)
1. First, observe the sequence: [tex]\(13, 27, 41, 55, \ldots\)[/tex].
2. Determine the first differences between consecutive terms in the sequence:
[tex]\[ 27 - 13 = 14 \][/tex]
[tex]\[ 41 - 27 = 14 \][/tex]
[tex]\[ 55 - 41 = 14 \][/tex]
The differences between consecutive terms are constant and equal to [tex]\(14\)[/tex]. Therefore, this sequence is an arithmetic sequence with a common difference ([tex]\(d\)[/tex]) of [tex]\(14\)[/tex].
3. To find the general rule for the [tex]\(n\)[/tex]-th term of an arithmetic sequence, we use the formula:
[tex]\[ a_n = a_1 + (n - 1)d \][/tex]
Where:
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term,
- [tex]\(a_1\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the term number.
4. Substitute the known values into the formula:
- The first term [tex]\(a_1 = 13\)[/tex],
- The common difference [tex]\(d = 14\)[/tex].
The formula becomes:
[tex]\[ a_n = 13 + (n - 1) \cdot 14 \][/tex]
5. Simplify the expression:
[tex]\[ a_n = 13 + 14(n - 1) \][/tex]
[tex]\[ a_n = 13 + 14n - 14 \][/tex]
[tex]\[ a_n = 14n - 1 \][/tex]
6. From the provided options:
- Option A) [tex]\( a_n = 13 + 14(n - 1) \)[/tex],
- Option B) [tex]\( a_n = 13 - 14(n - 1) \)[/tex].
Option A matches our derived rule.
Therefore, the correct answer is:
\[ \boxed{A} \)
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.