Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Given the sequence [tex]\(13, 27, 41, 55, \ldots\)[/tex], we want to identify the rule that represents this sequence.
1. First, observe the sequence: [tex]\(13, 27, 41, 55, \ldots\)[/tex].
2. Determine the first differences between consecutive terms in the sequence:
[tex]\[ 27 - 13 = 14 \][/tex]
[tex]\[ 41 - 27 = 14 \][/tex]
[tex]\[ 55 - 41 = 14 \][/tex]
The differences between consecutive terms are constant and equal to [tex]\(14\)[/tex]. Therefore, this sequence is an arithmetic sequence with a common difference ([tex]\(d\)[/tex]) of [tex]\(14\)[/tex].
3. To find the general rule for the [tex]\(n\)[/tex]-th term of an arithmetic sequence, we use the formula:
[tex]\[ a_n = a_1 + (n - 1)d \][/tex]
Where:
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term,
- [tex]\(a_1\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the term number.
4. Substitute the known values into the formula:
- The first term [tex]\(a_1 = 13\)[/tex],
- The common difference [tex]\(d = 14\)[/tex].
The formula becomes:
[tex]\[ a_n = 13 + (n - 1) \cdot 14 \][/tex]
5. Simplify the expression:
[tex]\[ a_n = 13 + 14(n - 1) \][/tex]
[tex]\[ a_n = 13 + 14n - 14 \][/tex]
[tex]\[ a_n = 14n - 1 \][/tex]
6. From the provided options:
- Option A) [tex]\( a_n = 13 + 14(n - 1) \)[/tex],
- Option B) [tex]\( a_n = 13 - 14(n - 1) \)[/tex].
Option A matches our derived rule.
Therefore, the correct answer is:
\[ \boxed{A} \)
1. First, observe the sequence: [tex]\(13, 27, 41, 55, \ldots\)[/tex].
2. Determine the first differences between consecutive terms in the sequence:
[tex]\[ 27 - 13 = 14 \][/tex]
[tex]\[ 41 - 27 = 14 \][/tex]
[tex]\[ 55 - 41 = 14 \][/tex]
The differences between consecutive terms are constant and equal to [tex]\(14\)[/tex]. Therefore, this sequence is an arithmetic sequence with a common difference ([tex]\(d\)[/tex]) of [tex]\(14\)[/tex].
3. To find the general rule for the [tex]\(n\)[/tex]-th term of an arithmetic sequence, we use the formula:
[tex]\[ a_n = a_1 + (n - 1)d \][/tex]
Where:
- [tex]\(a_n\)[/tex] is the [tex]\(n\)[/tex]-th term,
- [tex]\(a_1\)[/tex] is the first term,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the term number.
4. Substitute the known values into the formula:
- The first term [tex]\(a_1 = 13\)[/tex],
- The common difference [tex]\(d = 14\)[/tex].
The formula becomes:
[tex]\[ a_n = 13 + (n - 1) \cdot 14 \][/tex]
5. Simplify the expression:
[tex]\[ a_n = 13 + 14(n - 1) \][/tex]
[tex]\[ a_n = 13 + 14n - 14 \][/tex]
[tex]\[ a_n = 14n - 1 \][/tex]
6. From the provided options:
- Option A) [tex]\( a_n = 13 + 14(n - 1) \)[/tex],
- Option B) [tex]\( a_n = 13 - 14(n - 1) \)[/tex].
Option A matches our derived rule.
Therefore, the correct answer is:
\[ \boxed{A} \)
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.