Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the derivative [tex]\( \frac{dy}{dx} \)[/tex] when [tex]\( y = \left(x^2 + 2x - 1\right)^5 \)[/tex], we need to use the chain rule. Here's the step-by-step solution:
1. Identify the outer and inner functions:
- The outer function is [tex]\( u^5 \)[/tex], where [tex]\( u = x^2 + 2x - 1 \)[/tex].
- The inner function is [tex]\( x^2 + 2x - 1 \)[/tex].
2. Take the derivative of the outer function with respect to the inner function [tex]\( u \)[/tex]:
[tex]\[ \frac{d}{du}(u^5) = 5u^4 \][/tex]
Since [tex]\( u = x^2 + 2x - 1 \)[/tex], this becomes:
[tex]\[ 5(x^2 + 2x - 1)^4 \][/tex]
3. Take the derivative of the inner function [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(x^2 + 2x - 1) = 2x + 2 \][/tex]
4. Apply the chain rule:
The chain rule states that:
[tex]\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \][/tex]
Substituting in the derivatives we found:
[tex]\[ \frac{dy}{dx} = 5(x^2 + 2x - 1)^4 \cdot (2x + 2) \][/tex]
5. Simplify the expression:
Factor out the common terms:
[tex]\[ \frac{dy}{dx} = 5(2x + 2)(x^2 + 2x - 1)^4 \][/tex]
[tex]\[ \frac{dy}{dx} = 10(x + 1)(x^2 + 2x - 1)^4 \][/tex]
The simplified derivative is:
[tex]\[ \frac{dy}{dx} = 10(x + 1)(x^2 + 2x - 1)^4 \][/tex]
However, in its unsimplified form, it's:
[tex]\[ \frac{dy}{dx} = (10x + 10)(x^2 + 2x - 1)^4 \][/tex]
Both forms represent the same result:
[tex]\[ \left( \frac{dy}{dx} \right) = \left( (10x + 10)(x^2 + 2x - 1)^4, 10(x + 1)(x^2 + 2x - 1)^4 \right) \][/tex]
1. Identify the outer and inner functions:
- The outer function is [tex]\( u^5 \)[/tex], where [tex]\( u = x^2 + 2x - 1 \)[/tex].
- The inner function is [tex]\( x^2 + 2x - 1 \)[/tex].
2. Take the derivative of the outer function with respect to the inner function [tex]\( u \)[/tex]:
[tex]\[ \frac{d}{du}(u^5) = 5u^4 \][/tex]
Since [tex]\( u = x^2 + 2x - 1 \)[/tex], this becomes:
[tex]\[ 5(x^2 + 2x - 1)^4 \][/tex]
3. Take the derivative of the inner function [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx}(x^2 + 2x - 1) = 2x + 2 \][/tex]
4. Apply the chain rule:
The chain rule states that:
[tex]\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \][/tex]
Substituting in the derivatives we found:
[tex]\[ \frac{dy}{dx} = 5(x^2 + 2x - 1)^4 \cdot (2x + 2) \][/tex]
5. Simplify the expression:
Factor out the common terms:
[tex]\[ \frac{dy}{dx} = 5(2x + 2)(x^2 + 2x - 1)^4 \][/tex]
[tex]\[ \frac{dy}{dx} = 10(x + 1)(x^2 + 2x - 1)^4 \][/tex]
The simplified derivative is:
[tex]\[ \frac{dy}{dx} = 10(x + 1)(x^2 + 2x - 1)^4 \][/tex]
However, in its unsimplified form, it's:
[tex]\[ \frac{dy}{dx} = (10x + 10)(x^2 + 2x - 1)^4 \][/tex]
Both forms represent the same result:
[tex]\[ \left( \frac{dy}{dx} \right) = \left( (10x + 10)(x^2 + 2x - 1)^4, 10(x + 1)(x^2 + 2x - 1)^4 \right) \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.