Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the area [tex]\( A \)[/tex] of polygons drawn with 3 to 10 boundary dots [tex]\( (b) \)[/tex] where there are only 2 interior dots [tex]\( (i) \)[/tex], we can use Pick's Theorem. Pick's Theorem states that for a simple polygon with [tex]\( i \)[/tex] interior lattice points and [tex]\( b \)[/tex] boundary lattice points, the area [tex]\( A \)[/tex] of the polygon can be given by:
[tex]\[ A = i + \frac{b}{2} - 1 \][/tex]
Given that [tex]\( i = 2 \)[/tex], we substitute into the formula as follows:
[tex]\[ A = 2 + \frac{b}{2} - 1 = \frac{b}{2} + 1 \][/tex]
Now, let's calculate [tex]\( A \)[/tex] for each value of [tex]\( b \)[/tex] from 3 to 10.
1. For [tex]\( b = 3 \)[/tex]:
[tex]\[ A = \frac{3}{2} + 1 = 1.5 + 1 = 2.5 \][/tex]
2. For [tex]\( b = 4 \)[/tex]:
[tex]\[ A = \frac{4}{2} + 1 = 2 + 1 = 3.0 \][/tex]
3. For [tex]\( b = 5 \)[/tex]:
[tex]\[ A = \frac{5}{2} + 1 = 2.5 + 1 = 3.5 \][/tex]
4. For [tex]\( b = 6 \)[/tex]:
[tex]\[ A = \frac{6}{2} + 1 = 3 + 1 = 4.0 \][/tex]
5. For [tex]\( b = 7 \)[/tex]:
[tex]\[ A = \frac{7}{2} + 1 = 3.5 + 1 = 4.5 \][/tex]
6. For [tex]\( b = 8 \)[/tex]:
[tex]\[ A = \frac{8}{2} + 1 = 4 + 1 = 5.0 \][/tex]
7. For [tex]\( b = 9 \)[/tex]:
[tex]\[ A = \frac{9}{2} + 1 = 4.5 + 1 = 5.5 \][/tex]
8. For [tex]\( b = 10 \)[/tex]:
[tex]\[ A = \frac{10}{2} + 1 = 5 + 1 = 6.0 \][/tex]
Fill in the table with the calculated areas:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline
(b) & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
(A) & 2.5 & 3.0 & 3.5 & 4.0 & 4.5 & 5.0 & 5.5 & 6.0 \\
\hline
\end{tabular}
So, the relationship between [tex]\( b \)[/tex] and [tex]\( A \)[/tex] when [tex]\( i = 2 \)[/tex] can be summarized by the formula:
[tex]\[ A = \frac{b}{2} + 1 \][/tex]
This gives us a straightforward method to determine the area for any polygon with [tex]\( i = 2 \)[/tex] interior dots by knowing only the boundary dots [tex]\( b \)[/tex].
[tex]\[ A = i + \frac{b}{2} - 1 \][/tex]
Given that [tex]\( i = 2 \)[/tex], we substitute into the formula as follows:
[tex]\[ A = 2 + \frac{b}{2} - 1 = \frac{b}{2} + 1 \][/tex]
Now, let's calculate [tex]\( A \)[/tex] for each value of [tex]\( b \)[/tex] from 3 to 10.
1. For [tex]\( b = 3 \)[/tex]:
[tex]\[ A = \frac{3}{2} + 1 = 1.5 + 1 = 2.5 \][/tex]
2. For [tex]\( b = 4 \)[/tex]:
[tex]\[ A = \frac{4}{2} + 1 = 2 + 1 = 3.0 \][/tex]
3. For [tex]\( b = 5 \)[/tex]:
[tex]\[ A = \frac{5}{2} + 1 = 2.5 + 1 = 3.5 \][/tex]
4. For [tex]\( b = 6 \)[/tex]:
[tex]\[ A = \frac{6}{2} + 1 = 3 + 1 = 4.0 \][/tex]
5. For [tex]\( b = 7 \)[/tex]:
[tex]\[ A = \frac{7}{2} + 1 = 3.5 + 1 = 4.5 \][/tex]
6. For [tex]\( b = 8 \)[/tex]:
[tex]\[ A = \frac{8}{2} + 1 = 4 + 1 = 5.0 \][/tex]
7. For [tex]\( b = 9 \)[/tex]:
[tex]\[ A = \frac{9}{2} + 1 = 4.5 + 1 = 5.5 \][/tex]
8. For [tex]\( b = 10 \)[/tex]:
[tex]\[ A = \frac{10}{2} + 1 = 5 + 1 = 6.0 \][/tex]
Fill in the table with the calculated areas:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline
(b) & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
(A) & 2.5 & 3.0 & 3.5 & 4.0 & 4.5 & 5.0 & 5.5 & 6.0 \\
\hline
\end{tabular}
So, the relationship between [tex]\( b \)[/tex] and [tex]\( A \)[/tex] when [tex]\( i = 2 \)[/tex] can be summarized by the formula:
[tex]\[ A = \frac{b}{2} + 1 \][/tex]
This gives us a straightforward method to determine the area for any polygon with [tex]\( i = 2 \)[/tex] interior dots by knowing only the boundary dots [tex]\( b \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.