Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's analyze and solve the problem step-by-step. We are given a logarithmic equation and asked to write it in exponential form.
### Step 1: Understand the given logarithmic equation
The given logarithmic equation is:
[tex]\[ \log_2(8\sqrt{2}) = \frac{7}{2} \][/tex]
### Step 2: Convert the logarithmic equation to exponential form
Recall that if [tex]\(\log_b(x) = y\)[/tex], then this can be converted to exponential form as [tex]\(b^y = x\)[/tex].
Here, the base [tex]\(b\)[/tex] is 2, [tex]\(x\)[/tex] is [tex]\(8\sqrt{2}\)[/tex], and [tex]\(y\)[/tex] is [tex]\(\frac{7}{2}\)[/tex]. Thus, the given logarithmic equation can be written in exponential form as:
[tex]\[ 2^{\frac{7}{2}} = 8\sqrt{2} \][/tex]
### Step 3: Verify the conversion by evaluating each component
We will verify the values for base, result (`8\sqrt{2}`), exponent ([tex]\(\frac{7}{2}\)[/tex]), and the result of the exponential form.
#### 3.1 Verify `8\sqrt{2}`:
[tex]\[ 8\sqrt{2} \approx 11.3137 \][/tex]
#### 3.2 Evaluate [tex]\(\frac{7}{2}\)[/tex]:
[tex]\[ \frac{7}{2} = 3.5 \][/tex]
#### 3.3 Calculate [tex]\(2^{3.5}\)[/tex]:
Since [tex]\(3.5\)[/tex] is the exponent, calculate [tex]\(2^{3.5}\)[/tex]:
[tex]\[ 2^{3.5} = 2^{7/2} \approx 11.3137 \][/tex]
From the evaluations, we observe:
- [tex]\(8\sqrt{2} \approx 11.3137\)[/tex]
- [tex]\(2^{\frac{7}{2}} \approx 11.3137\)[/tex]
This confirms both sides are equal for the given values.
### Step 4: Conclusion
The logarithmic equation [tex]\(\log_2(8\sqrt{2}) = \frac{7}{2}\)[/tex] in exponential form is:
[tex]\[ 2^{\frac{7}{2}} = 8\sqrt{2} \][/tex]
### Step 1: Understand the given logarithmic equation
The given logarithmic equation is:
[tex]\[ \log_2(8\sqrt{2}) = \frac{7}{2} \][/tex]
### Step 2: Convert the logarithmic equation to exponential form
Recall that if [tex]\(\log_b(x) = y\)[/tex], then this can be converted to exponential form as [tex]\(b^y = x\)[/tex].
Here, the base [tex]\(b\)[/tex] is 2, [tex]\(x\)[/tex] is [tex]\(8\sqrt{2}\)[/tex], and [tex]\(y\)[/tex] is [tex]\(\frac{7}{2}\)[/tex]. Thus, the given logarithmic equation can be written in exponential form as:
[tex]\[ 2^{\frac{7}{2}} = 8\sqrt{2} \][/tex]
### Step 3: Verify the conversion by evaluating each component
We will verify the values for base, result (`8\sqrt{2}`), exponent ([tex]\(\frac{7}{2}\)[/tex]), and the result of the exponential form.
#### 3.1 Verify `8\sqrt{2}`:
[tex]\[ 8\sqrt{2} \approx 11.3137 \][/tex]
#### 3.2 Evaluate [tex]\(\frac{7}{2}\)[/tex]:
[tex]\[ \frac{7}{2} = 3.5 \][/tex]
#### 3.3 Calculate [tex]\(2^{3.5}\)[/tex]:
Since [tex]\(3.5\)[/tex] is the exponent, calculate [tex]\(2^{3.5}\)[/tex]:
[tex]\[ 2^{3.5} = 2^{7/2} \approx 11.3137 \][/tex]
From the evaluations, we observe:
- [tex]\(8\sqrt{2} \approx 11.3137\)[/tex]
- [tex]\(2^{\frac{7}{2}} \approx 11.3137\)[/tex]
This confirms both sides are equal for the given values.
### Step 4: Conclusion
The logarithmic equation [tex]\(\log_2(8\sqrt{2}) = \frac{7}{2}\)[/tex] in exponential form is:
[tex]\[ 2^{\frac{7}{2}} = 8\sqrt{2} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.