Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's analyze and solve the problem step-by-step. We are given a logarithmic equation and asked to write it in exponential form.
### Step 1: Understand the given logarithmic equation
The given logarithmic equation is:
[tex]\[ \log_2(8\sqrt{2}) = \frac{7}{2} \][/tex]
### Step 2: Convert the logarithmic equation to exponential form
Recall that if [tex]\(\log_b(x) = y\)[/tex], then this can be converted to exponential form as [tex]\(b^y = x\)[/tex].
Here, the base [tex]\(b\)[/tex] is 2, [tex]\(x\)[/tex] is [tex]\(8\sqrt{2}\)[/tex], and [tex]\(y\)[/tex] is [tex]\(\frac{7}{2}\)[/tex]. Thus, the given logarithmic equation can be written in exponential form as:
[tex]\[ 2^{\frac{7}{2}} = 8\sqrt{2} \][/tex]
### Step 3: Verify the conversion by evaluating each component
We will verify the values for base, result (`8\sqrt{2}`), exponent ([tex]\(\frac{7}{2}\)[/tex]), and the result of the exponential form.
#### 3.1 Verify `8\sqrt{2}`:
[tex]\[ 8\sqrt{2} \approx 11.3137 \][/tex]
#### 3.2 Evaluate [tex]\(\frac{7}{2}\)[/tex]:
[tex]\[ \frac{7}{2} = 3.5 \][/tex]
#### 3.3 Calculate [tex]\(2^{3.5}\)[/tex]:
Since [tex]\(3.5\)[/tex] is the exponent, calculate [tex]\(2^{3.5}\)[/tex]:
[tex]\[ 2^{3.5} = 2^{7/2} \approx 11.3137 \][/tex]
From the evaluations, we observe:
- [tex]\(8\sqrt{2} \approx 11.3137\)[/tex]
- [tex]\(2^{\frac{7}{2}} \approx 11.3137\)[/tex]
This confirms both sides are equal for the given values.
### Step 4: Conclusion
The logarithmic equation [tex]\(\log_2(8\sqrt{2}) = \frac{7}{2}\)[/tex] in exponential form is:
[tex]\[ 2^{\frac{7}{2}} = 8\sqrt{2} \][/tex]
### Step 1: Understand the given logarithmic equation
The given logarithmic equation is:
[tex]\[ \log_2(8\sqrt{2}) = \frac{7}{2} \][/tex]
### Step 2: Convert the logarithmic equation to exponential form
Recall that if [tex]\(\log_b(x) = y\)[/tex], then this can be converted to exponential form as [tex]\(b^y = x\)[/tex].
Here, the base [tex]\(b\)[/tex] is 2, [tex]\(x\)[/tex] is [tex]\(8\sqrt{2}\)[/tex], and [tex]\(y\)[/tex] is [tex]\(\frac{7}{2}\)[/tex]. Thus, the given logarithmic equation can be written in exponential form as:
[tex]\[ 2^{\frac{7}{2}} = 8\sqrt{2} \][/tex]
### Step 3: Verify the conversion by evaluating each component
We will verify the values for base, result (`8\sqrt{2}`), exponent ([tex]\(\frac{7}{2}\)[/tex]), and the result of the exponential form.
#### 3.1 Verify `8\sqrt{2}`:
[tex]\[ 8\sqrt{2} \approx 11.3137 \][/tex]
#### 3.2 Evaluate [tex]\(\frac{7}{2}\)[/tex]:
[tex]\[ \frac{7}{2} = 3.5 \][/tex]
#### 3.3 Calculate [tex]\(2^{3.5}\)[/tex]:
Since [tex]\(3.5\)[/tex] is the exponent, calculate [tex]\(2^{3.5}\)[/tex]:
[tex]\[ 2^{3.5} = 2^{7/2} \approx 11.3137 \][/tex]
From the evaluations, we observe:
- [tex]\(8\sqrt{2} \approx 11.3137\)[/tex]
- [tex]\(2^{\frac{7}{2}} \approx 11.3137\)[/tex]
This confirms both sides are equal for the given values.
### Step 4: Conclusion
The logarithmic equation [tex]\(\log_2(8\sqrt{2}) = \frac{7}{2}\)[/tex] in exponential form is:
[tex]\[ 2^{\frac{7}{2}} = 8\sqrt{2} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.