Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to find the values of [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(a\)[/tex] such that the objective function [tex]\(F = 4x + 3y + a\)[/tex] reaches its maximum value of 26 under the given constraints. Let's go through this step-by-step.
### Step 1: Set Up the Objective Function and Constraints
The objective function to maximize is:
[tex]\[ F = 4x + 3y + a \][/tex]
The given constraints are:
1. [tex]\( x + y \leq 6 \)[/tex]
2. [tex]\( 2x - y \leq 3 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
### Step 2: Solve for Optimal Values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]
We first need to find the optimal values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] without considering [tex]\(a\)[/tex] (since [tex]\(a\)[/tex] is a constant that will be adjusted later). We will maximize the function:
[tex]\[ F' = 4x + 3y \][/tex]
Subject to the same constraints:
1. [tex]\( x + y \leq 6 \)[/tex]
2. [tex]\( 2x - y \leq 3 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
### Step 3: Determine Feasible Region and Vertices
The feasible region is determined by the intersection of the constraints. We need to find the points of intersection (vertices) that typically include:
- Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(2x - y = 3\)[/tex]
- Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(x = 0\)[/tex]
- Intersection of [tex]\(2x - y = 3\)[/tex] and [tex]\(y = 0\)[/tex]
Solving these intersections:
1. Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(2x - y = 3\)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ 2x - y = 3 \end{cases} \][/tex]
Adding these two equations, we get:
[tex]\[ 3x = 9 \implies x = 3 \][/tex]
Substituting [tex]\(x = 3\)[/tex] into [tex]\(x + y = 6\)[/tex], we get:
[tex]\[ 3 + y = 6 \implies y = 3 \][/tex]
So, [tex]\((x, y) = (3, 3)\)[/tex].
2. Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(x = 0\)[/tex]:
[tex]\[ 0 + y = 6 \implies y = 6 \][/tex]
So, [tex]\((x, y) = (0, 6)\)[/tex].
3. Intersection of [tex]\(2x - y = 3\)[/tex] and [tex]\(y = 0\)[/tex]:
[tex]\[ 2x - 0 = 3 \implies x = 1.5 \][/tex]
So, [tex]\((x, y) = (1.5, 0)\)[/tex].
### Step 4: Evaluate [tex]\(F' = 4x + 3y\)[/tex] at the Vertices
1. At [tex]\((x, y) = (3, 3)\)[/tex]:
[tex]\[ F' = 4(3) + 3(3) = 12 + 9 = 21 \][/tex]
2. At [tex]\((x, y) = (0, 6)\)[/tex]:
[tex]\[ F' = 4(0) + 3(6) = 0 + 18 = 18 \][/tex]
3. At [tex]\((x, y) = (1.5, 0)\)[/tex]:
[tex]\[ F' = 4(1.5) + 3(0) = 6 + 0 = 6 \][/tex]
The optimal value of [tex]\(F'\)[/tex] is 21 at the vertex [tex]\((3, 3)\)[/tex].
### Step 5: Determine the Value of [tex]\(a\)[/tex]
Given that the maximum value of [tex]\(F = 4x + 3y + a\)[/tex] is 26, and we found that [tex]\(4x + 3y\)[/tex] equals 21 at the optimal point:
[tex]\[ 4(3) + 3(3) + a = 26 \][/tex]
[tex]\[ 21 + a = 26 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = 26 - 21 \][/tex]
[tex]\[ a = 5 \][/tex]
### Conclusion
The value of [tex]\(a\)[/tex] that makes the maximum value of the objective function [tex]\(F = 4x + 3y + a\)[/tex] equal to 26 is [tex]\( \boxed{5} \)[/tex].
### Step 1: Set Up the Objective Function and Constraints
The objective function to maximize is:
[tex]\[ F = 4x + 3y + a \][/tex]
The given constraints are:
1. [tex]\( x + y \leq 6 \)[/tex]
2. [tex]\( 2x - y \leq 3 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
### Step 2: Solve for Optimal Values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]
We first need to find the optimal values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] without considering [tex]\(a\)[/tex] (since [tex]\(a\)[/tex] is a constant that will be adjusted later). We will maximize the function:
[tex]\[ F' = 4x + 3y \][/tex]
Subject to the same constraints:
1. [tex]\( x + y \leq 6 \)[/tex]
2. [tex]\( 2x - y \leq 3 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
### Step 3: Determine Feasible Region and Vertices
The feasible region is determined by the intersection of the constraints. We need to find the points of intersection (vertices) that typically include:
- Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(2x - y = 3\)[/tex]
- Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(x = 0\)[/tex]
- Intersection of [tex]\(2x - y = 3\)[/tex] and [tex]\(y = 0\)[/tex]
Solving these intersections:
1. Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(2x - y = 3\)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ 2x - y = 3 \end{cases} \][/tex]
Adding these two equations, we get:
[tex]\[ 3x = 9 \implies x = 3 \][/tex]
Substituting [tex]\(x = 3\)[/tex] into [tex]\(x + y = 6\)[/tex], we get:
[tex]\[ 3 + y = 6 \implies y = 3 \][/tex]
So, [tex]\((x, y) = (3, 3)\)[/tex].
2. Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(x = 0\)[/tex]:
[tex]\[ 0 + y = 6 \implies y = 6 \][/tex]
So, [tex]\((x, y) = (0, 6)\)[/tex].
3. Intersection of [tex]\(2x - y = 3\)[/tex] and [tex]\(y = 0\)[/tex]:
[tex]\[ 2x - 0 = 3 \implies x = 1.5 \][/tex]
So, [tex]\((x, y) = (1.5, 0)\)[/tex].
### Step 4: Evaluate [tex]\(F' = 4x + 3y\)[/tex] at the Vertices
1. At [tex]\((x, y) = (3, 3)\)[/tex]:
[tex]\[ F' = 4(3) + 3(3) = 12 + 9 = 21 \][/tex]
2. At [tex]\((x, y) = (0, 6)\)[/tex]:
[tex]\[ F' = 4(0) + 3(6) = 0 + 18 = 18 \][/tex]
3. At [tex]\((x, y) = (1.5, 0)\)[/tex]:
[tex]\[ F' = 4(1.5) + 3(0) = 6 + 0 = 6 \][/tex]
The optimal value of [tex]\(F'\)[/tex] is 21 at the vertex [tex]\((3, 3)\)[/tex].
### Step 5: Determine the Value of [tex]\(a\)[/tex]
Given that the maximum value of [tex]\(F = 4x + 3y + a\)[/tex] is 26, and we found that [tex]\(4x + 3y\)[/tex] equals 21 at the optimal point:
[tex]\[ 4(3) + 3(3) + a = 26 \][/tex]
[tex]\[ 21 + a = 26 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = 26 - 21 \][/tex]
[tex]\[ a = 5 \][/tex]
### Conclusion
The value of [tex]\(a\)[/tex] that makes the maximum value of the objective function [tex]\(F = 4x + 3y + a\)[/tex] equal to 26 is [tex]\( \boxed{5} \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.