Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve this problem, we need to find the values of [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(a\)[/tex] such that the objective function [tex]\(F = 4x + 3y + a\)[/tex] reaches its maximum value of 26 under the given constraints. Let's go through this step-by-step.
### Step 1: Set Up the Objective Function and Constraints
The objective function to maximize is:
[tex]\[ F = 4x + 3y + a \][/tex]
The given constraints are:
1. [tex]\( x + y \leq 6 \)[/tex]
2. [tex]\( 2x - y \leq 3 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
### Step 2: Solve for Optimal Values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]
We first need to find the optimal values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] without considering [tex]\(a\)[/tex] (since [tex]\(a\)[/tex] is a constant that will be adjusted later). We will maximize the function:
[tex]\[ F' = 4x + 3y \][/tex]
Subject to the same constraints:
1. [tex]\( x + y \leq 6 \)[/tex]
2. [tex]\( 2x - y \leq 3 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
### Step 3: Determine Feasible Region and Vertices
The feasible region is determined by the intersection of the constraints. We need to find the points of intersection (vertices) that typically include:
- Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(2x - y = 3\)[/tex]
- Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(x = 0\)[/tex]
- Intersection of [tex]\(2x - y = 3\)[/tex] and [tex]\(y = 0\)[/tex]
Solving these intersections:
1. Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(2x - y = 3\)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ 2x - y = 3 \end{cases} \][/tex]
Adding these two equations, we get:
[tex]\[ 3x = 9 \implies x = 3 \][/tex]
Substituting [tex]\(x = 3\)[/tex] into [tex]\(x + y = 6\)[/tex], we get:
[tex]\[ 3 + y = 6 \implies y = 3 \][/tex]
So, [tex]\((x, y) = (3, 3)\)[/tex].
2. Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(x = 0\)[/tex]:
[tex]\[ 0 + y = 6 \implies y = 6 \][/tex]
So, [tex]\((x, y) = (0, 6)\)[/tex].
3. Intersection of [tex]\(2x - y = 3\)[/tex] and [tex]\(y = 0\)[/tex]:
[tex]\[ 2x - 0 = 3 \implies x = 1.5 \][/tex]
So, [tex]\((x, y) = (1.5, 0)\)[/tex].
### Step 4: Evaluate [tex]\(F' = 4x + 3y\)[/tex] at the Vertices
1. At [tex]\((x, y) = (3, 3)\)[/tex]:
[tex]\[ F' = 4(3) + 3(3) = 12 + 9 = 21 \][/tex]
2. At [tex]\((x, y) = (0, 6)\)[/tex]:
[tex]\[ F' = 4(0) + 3(6) = 0 + 18 = 18 \][/tex]
3. At [tex]\((x, y) = (1.5, 0)\)[/tex]:
[tex]\[ F' = 4(1.5) + 3(0) = 6 + 0 = 6 \][/tex]
The optimal value of [tex]\(F'\)[/tex] is 21 at the vertex [tex]\((3, 3)\)[/tex].
### Step 5: Determine the Value of [tex]\(a\)[/tex]
Given that the maximum value of [tex]\(F = 4x + 3y + a\)[/tex] is 26, and we found that [tex]\(4x + 3y\)[/tex] equals 21 at the optimal point:
[tex]\[ 4(3) + 3(3) + a = 26 \][/tex]
[tex]\[ 21 + a = 26 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = 26 - 21 \][/tex]
[tex]\[ a = 5 \][/tex]
### Conclusion
The value of [tex]\(a\)[/tex] that makes the maximum value of the objective function [tex]\(F = 4x + 3y + a\)[/tex] equal to 26 is [tex]\( \boxed{5} \)[/tex].
### Step 1: Set Up the Objective Function and Constraints
The objective function to maximize is:
[tex]\[ F = 4x + 3y + a \][/tex]
The given constraints are:
1. [tex]\( x + y \leq 6 \)[/tex]
2. [tex]\( 2x - y \leq 3 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
### Step 2: Solve for Optimal Values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]
We first need to find the optimal values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] without considering [tex]\(a\)[/tex] (since [tex]\(a\)[/tex] is a constant that will be adjusted later). We will maximize the function:
[tex]\[ F' = 4x + 3y \][/tex]
Subject to the same constraints:
1. [tex]\( x + y \leq 6 \)[/tex]
2. [tex]\( 2x - y \leq 3 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
### Step 3: Determine Feasible Region and Vertices
The feasible region is determined by the intersection of the constraints. We need to find the points of intersection (vertices) that typically include:
- Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(2x - y = 3\)[/tex]
- Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(x = 0\)[/tex]
- Intersection of [tex]\(2x - y = 3\)[/tex] and [tex]\(y = 0\)[/tex]
Solving these intersections:
1. Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(2x - y = 3\)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ 2x - y = 3 \end{cases} \][/tex]
Adding these two equations, we get:
[tex]\[ 3x = 9 \implies x = 3 \][/tex]
Substituting [tex]\(x = 3\)[/tex] into [tex]\(x + y = 6\)[/tex], we get:
[tex]\[ 3 + y = 6 \implies y = 3 \][/tex]
So, [tex]\((x, y) = (3, 3)\)[/tex].
2. Intersection of [tex]\(x + y = 6\)[/tex] and [tex]\(x = 0\)[/tex]:
[tex]\[ 0 + y = 6 \implies y = 6 \][/tex]
So, [tex]\((x, y) = (0, 6)\)[/tex].
3. Intersection of [tex]\(2x - y = 3\)[/tex] and [tex]\(y = 0\)[/tex]:
[tex]\[ 2x - 0 = 3 \implies x = 1.5 \][/tex]
So, [tex]\((x, y) = (1.5, 0)\)[/tex].
### Step 4: Evaluate [tex]\(F' = 4x + 3y\)[/tex] at the Vertices
1. At [tex]\((x, y) = (3, 3)\)[/tex]:
[tex]\[ F' = 4(3) + 3(3) = 12 + 9 = 21 \][/tex]
2. At [tex]\((x, y) = (0, 6)\)[/tex]:
[tex]\[ F' = 4(0) + 3(6) = 0 + 18 = 18 \][/tex]
3. At [tex]\((x, y) = (1.5, 0)\)[/tex]:
[tex]\[ F' = 4(1.5) + 3(0) = 6 + 0 = 6 \][/tex]
The optimal value of [tex]\(F'\)[/tex] is 21 at the vertex [tex]\((3, 3)\)[/tex].
### Step 5: Determine the Value of [tex]\(a\)[/tex]
Given that the maximum value of [tex]\(F = 4x + 3y + a\)[/tex] is 26, and we found that [tex]\(4x + 3y\)[/tex] equals 21 at the optimal point:
[tex]\[ 4(3) + 3(3) + a = 26 \][/tex]
[tex]\[ 21 + a = 26 \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ a = 26 - 21 \][/tex]
[tex]\[ a = 5 \][/tex]
### Conclusion
The value of [tex]\(a\)[/tex] that makes the maximum value of the objective function [tex]\(F = 4x + 3y + a\)[/tex] equal to 26 is [tex]\( \boxed{5} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.