Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To analyze the rational function [tex]\( f(x) = \frac{x}{x-3} \)[/tex] for vertical asymptotes and holes, let's go through the steps in detail:
### Step 1: Find the Vertical Asymptotes
Vertical asymptotes occur where the denominator of the rational function equals zero, causing the function to be undefined.
Given [tex]\( f(x) = \frac{x}{x-3} \)[/tex], we set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 3 = 0 \][/tex]
[tex]\[ x = 3 \][/tex]
So, there is a vertical asymptote at [tex]\( x = 3 \)[/tex].
### Step 2: Find the Holes
Holes in the graph of a rational function occur where there are common factors in the numerator and the denominator that cancel each other out.
For the function [tex]\( f(x) = \frac{x}{x-3} \)[/tex], the numerator is [tex]\( x \)[/tex] and the denominator is [tex]\( x-3 \)[/tex]. Clearly, there are no common factors between the numerator and the denominator. Therefore, there are no holes in the graph of this function.
### Conclusion
Based on this analysis, the correct choice is:
C. The vertical asymptote(s) is (are) [tex]\( x = 3 \)[/tex]. There are no holes.
Thus, the final answer is:
C. The vertical asymptote(s) is (are) [tex]\( x = 3 \)[/tex]. There are no holes.
### Step 1: Find the Vertical Asymptotes
Vertical asymptotes occur where the denominator of the rational function equals zero, causing the function to be undefined.
Given [tex]\( f(x) = \frac{x}{x-3} \)[/tex], we set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 3 = 0 \][/tex]
[tex]\[ x = 3 \][/tex]
So, there is a vertical asymptote at [tex]\( x = 3 \)[/tex].
### Step 2: Find the Holes
Holes in the graph of a rational function occur where there are common factors in the numerator and the denominator that cancel each other out.
For the function [tex]\( f(x) = \frac{x}{x-3} \)[/tex], the numerator is [tex]\( x \)[/tex] and the denominator is [tex]\( x-3 \)[/tex]. Clearly, there are no common factors between the numerator and the denominator. Therefore, there are no holes in the graph of this function.
### Conclusion
Based on this analysis, the correct choice is:
C. The vertical asymptote(s) is (are) [tex]\( x = 3 \)[/tex]. There are no holes.
Thus, the final answer is:
C. The vertical asymptote(s) is (are) [tex]\( x = 3 \)[/tex]. There are no holes.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.