At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To analyze the rational function [tex]\( f(x) = \frac{x}{x-3} \)[/tex] for vertical asymptotes and holes, let's go through the steps in detail:
### Step 1: Find the Vertical Asymptotes
Vertical asymptotes occur where the denominator of the rational function equals zero, causing the function to be undefined.
Given [tex]\( f(x) = \frac{x}{x-3} \)[/tex], we set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 3 = 0 \][/tex]
[tex]\[ x = 3 \][/tex]
So, there is a vertical asymptote at [tex]\( x = 3 \)[/tex].
### Step 2: Find the Holes
Holes in the graph of a rational function occur where there are common factors in the numerator and the denominator that cancel each other out.
For the function [tex]\( f(x) = \frac{x}{x-3} \)[/tex], the numerator is [tex]\( x \)[/tex] and the denominator is [tex]\( x-3 \)[/tex]. Clearly, there are no common factors between the numerator and the denominator. Therefore, there are no holes in the graph of this function.
### Conclusion
Based on this analysis, the correct choice is:
C. The vertical asymptote(s) is (are) [tex]\( x = 3 \)[/tex]. There are no holes.
Thus, the final answer is:
C. The vertical asymptote(s) is (are) [tex]\( x = 3 \)[/tex]. There are no holes.
### Step 1: Find the Vertical Asymptotes
Vertical asymptotes occur where the denominator of the rational function equals zero, causing the function to be undefined.
Given [tex]\( f(x) = \frac{x}{x-3} \)[/tex], we set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 3 = 0 \][/tex]
[tex]\[ x = 3 \][/tex]
So, there is a vertical asymptote at [tex]\( x = 3 \)[/tex].
### Step 2: Find the Holes
Holes in the graph of a rational function occur where there are common factors in the numerator and the denominator that cancel each other out.
For the function [tex]\( f(x) = \frac{x}{x-3} \)[/tex], the numerator is [tex]\( x \)[/tex] and the denominator is [tex]\( x-3 \)[/tex]. Clearly, there are no common factors between the numerator and the denominator. Therefore, there are no holes in the graph of this function.
### Conclusion
Based on this analysis, the correct choice is:
C. The vertical asymptote(s) is (are) [tex]\( x = 3 \)[/tex]. There are no holes.
Thus, the final answer is:
C. The vertical asymptote(s) is (are) [tex]\( x = 3 \)[/tex]. There are no holes.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.